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Abstract: We present the experimental results of diffraction-induced
temporal splitting of chirped femtosecond optical pulses under the dy-
namical Bragg diffraction in the Laue geometry. For the experiments we
made a transparent, high quality porous-quartz based 1D photonic crystal
composed of 500 layers. We demonstrate that a selective compression
of pulses is observed in this case, that is only one pulse from the pair is
compressed, while the second one is broadened. This selective compression
effect is determined by the sign and the value of the chirp parameter of the
input pulse, in agreement with the theoretical description.

© 2014 Optical Society of America
OCIS codes: (050.1940) Diffraction; (320.5540) Pulse shaping; (050.5298) Photonic crystals;
(350.4238) Nanophotonics and photonic crystals.

References and links
1. P. St. J. Russell, “Bragg resonance of light in optical superlattices,” Phys. Rev. Lett.56(6), 596–599 (1986).
2. P. St. J. Russell, “Optical superlattices for modulation and deflection of light,” J. Appl. Phys.59(10), 3344–3355

(1986).
3. V. G. Baryshevsky and S. A. Maksimenko, “Light pulse dispersion under Laue diffraction from a spatial holo-

graphic grating,” Opt. Commun.94, 379 (1992).
4. B. I. Mantsyzov, “Laue soliton in resonantly absorbing photonic crystal,” Opt. Commun.189, 275–280 (2001).
5. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Band-gap structures of waveg-

uide arrays and excitation of Floquet-Bloch solitons,” Phys. Rev. Lett.90(5), 053902 (2003).
6. M. Calvo, P. Cheben, O. Martinez-Matos F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical

Pendellösung efect,” Phys. Rev. Lett.97, 084801 (2006).
7. S. Savo, E. Di Gennaro, C. Miletto, A. Andreone, P. Dardano, L. Moretti, and V. Mocella, “Pendellösung effect

in photonic crystals,” Opt. Express16, 9097–9105 (2008).
8. V. A. Bushuev, B. I. Mantsyzov, and A. A. Skorynin, “Diffraction-induced laser pulse splitting in a linear photonic

crystal,” Phys. Rev. A79, 053811 (2009).
9. S. E. Svyakhovskiy, V. O. Kompanets, A. I. Maidykovskiy, T. V. Murzina, S. V. Chekalin, V. A. Bushuev, A. A.

Skorynin, and B. I. Mantsyzov, “Observation of diffraction-induced laser pulse splitting in a photonic crystal,”
Phys. Rev. A86 013843 (2012).

10. A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic
crystals in the Laue geometry: diffraction-induced splitting, selective compression, and focusing of pulses,” J.
Experim. Theor. Phys.115, 56–67 (2012).

11. S. E. Svyakhovskiy, A. A. Skorynin, V. A. Bushuev, S. V. Chekalin, V. O. Kompanets, A. I. Maydykovskiy, T. V.
Murzina, V. B. Novikov, and B. I. Mantsyzov, “Polarization effects in diffraction-induced laser pulse splitting in
one-dimensional photonic crystals,” J. Opt. Soc. Am. B30(5), 1261–1269 (2013).

#224414 - $15.00 USD Received 6 Oct 2014; revised 23 Nov 2014; accepted 26 Nov 2014; published 5 Dec 2014 
(C) 2014 OSA 15 Dec 2014 | Vol. 22, No. 25 | DOI:10.1364/OE.22.031002 | OPTICS EXPRESS 31002 



12. B. Bruser, I. Staude, G. Freymann, M. Wegener, and U. Pietsch, “Visible light Laue diffraction from woodpile
photonic crystals,” Appl. Opt.51, 6732–6737 (2012).

13. L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, “Signatures of light-beam
spatial filtering in a three-dimensional photonic crystal,” Phys. Rev. A82, 043819 (2010).

14. B. Terhalle, A. Desyatnikov, D. Neshev, W. Krolikowski, C. Denz, and Y. S. Kivshar, “Dynamic diffraction and
interband transition in two-dimensional photonic lattices,” Phys. Rev. Lett.106, 083902 (2011).

15. R. W. James,Optical Principles of the Diffraction of X-Rays (Cornell University Press, 1965).
16. Z. G. Pinsker,Dynamical Scattering of X-rays in Crystals, Springer Ser. Solid-State Sci., Vol. 3 (Springer, 1977).
17. G. Borrmann, “̈Uber Extinktionsdiagramme der Röntgenstrahlen von Quarz,” Physik. Z.42 157 (1941).
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1. Introduction

Optical effects accompanying the dynamical Bragg diffraction in photonic crystals (PC) [1–6]
are being intensively studied in the last years [7–14]. This high activity is in part due to a sig-
nificant progress in modern technologies, which allows to fabricate high-quality PC structures.
The dynamical diffraction means the energy exchange between the transmitted and diffracted
waves during their propagation within a PC and can be observed only in diffraction-thick pho-
tonic crystals made of several hundreds of layers. The interest to the effects accompanying the
dynamical Bragg diffraction is caused by new perspectives in their applications for controlling
the parameters and dynamics of optical pulses.

Following the formalism of the X-ray optics, the boundary problem of the Bragg diffraction
in a PC can be divided into two groups, which correspond to the Bragg geometry (in reflection)
or to the Laue one (in transmission) [15,16]. In the first case the total Bragg reflection at the PC
boundary can be realized leading to the formation of the photonic band gap. On the contrary,
strongly coupled waves that propagate within a PC in the Laue diffraction scheme (Fig. 1(a))
do not experience strong losses under the reflection from the interfaces within a PC structure.
In that case, a number of strongly interacting waves is determined by the number of nodes of
the reciprocal lattice within the Ewald sphere [15].
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Fig. 1. (a) Schematic diagram of time splitting of chirped incident pulse within 1D PC in
the Laue geometry;T andR are the transmitted and diffractively reflected pairs of pulses;
t12 is the time delay between the splitted pulses. (b) Isofrequency curves for the Borrmann
(red line) and anti-Borrmann (blue line) modes close to the Bragg diffraction condition

k0x = G/2; θ is the angle of incidence of the input radiation; group velocitiesv(1)g , v(2)g are
shown by arrows. Dashed line corresponds to the dispersion curve of the effective medium.

(c) Vector diagram shows the wave vectorsk(1,2)
0,h of the four interacting waves propagating

in a PC,G is the reciprocal lattice vector.

Isofrequency dispersion curvesω(kox,kz) = const (Fig. 1(b)) are commonly used for the
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analysis of the dynamical diffraction of waves transmitted through a PC [8, 10, 11]. The
diffracted waves withkhx = k0x −G are described by similar symmetric curves, whereG is
the absolute value of the reciprocal lattice vector. It is clear from Fig. 1 that four waves
propagate in a PC for the case of the Laue diffraction scheme. The two waves with the

wave vectorsk(1,2)
0 = (k(1,2)z ;k0x) propagate in the direct direction and the two waves with

k(1,2)
h = (k(1,2)z ;khx = k0x −G) correspond to the diffracted direction, as is shown in Fig. 1(c).

Importantly that the tangential wave vector components of the direct wavesk0x are equal to
each other and real, as they are determined by the boundary conditionk0x = kinx, wherekinx is
the x-projection of the wave vector of the incident wave,kin. Thez−components of the wave

vectorsk(1,2)z are real quantities as well, which means that the waves propagate within a PC
in the Laue scheme without losses for any frequencyω and at any angle of incidenceθ . In
other words, no photonic band gap appears for both longitudinal and transversal propagation
directions even for an exact fulfilment of the “transversal” Bragg diffraction condition.

These four waves in pairs form the two propagating modes, Borrmann and anti-Borrmann
ones [15–17]. The first one is formed by the direct and diffracted waves with smaller values

of the wave vector projectionkz = k(1)z . Such waves propagate with the same group velocity

v(1)g along the normal to the corresponding dispersion curve (see Fig. 1(b)) and are spatially
localized in the layers with smaller refractive index. The second, anti-Borrmann, mode is local-

ized in the layers with higher refractive index and is formed by the waves with largerkz = k(2)z

values. Their group velocityv(2)g coincides withv(1)g only under the exact fulfilment of the Bragg
diffraction condition. Amplitudes of both Borrmann and anti-Borrmann waves are determined
by their deviation from the Bragg condition [11]. If all four waves are present in the same
point of a PC, their interference results in a periodic swap of energy from the directly propa-
gating wave to the diffracted one and vice versa, which appears as the so called Pendellösung
effect [6–9,15,16]. It is of high interest for all-optical switching of light in photonic crystals.

During their propagation in a PC, Borrmann and anti-Borrmann light pulses split temporally

due to their different spatial localization (different group velocityv(1)g andv(2)g ) (Fig. 1(b)).
This allows for the temporal diffraction-induced splitting of short laser pulses for a sufficient
size of the PC [8–11]. Outside the PC each of the two pulses splits spatially into two ones,
which correspond to the direct and diffracted directions, as is shown in Fig.1(a). This is due to
the breakdown of tight bonding of direct and diffracted waves outside the PC. Besides, it was
shown that the dispersion of transversal projections of the group velocities of the Borrmann

and anti-Borrmann pulses,v(1)gx andv(2)gx , are different in sign [10]. Thus it was proposed that a
selective compression can take place forchirped pulses propagating within a PC, which consists
in a compression of one of the outgoing pulses and broadening of the other one depending
on the chirp sign. To the best of our knowledge, up to now there have been no experimental
verifications of this effect.

In this paper we show the first experimental evidence of the existence ofselective com-
pression of chirped femtosecond laser pulses in 1D PC in the Laue diffraction scheme. We
demonstrate experimentally that for the case of porous quartz based PC, either the Borrmann
or the anti-Borrmann pulses are compressed depending on the sign of the chirp parameter. The
experimental results are in a good agreement with the finite-difference time-domain (FDTD)
numerical modelling and with the analytical description [10].

2. Experimental samples and setup

The experiments were performed for 1D photonic crystal composed of porous fused silica lay-
ers of different porosity made by the procedure described in detail elsewhere [18]. 1D porous
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silicon PC was made by electrochemical etching of crystalline Si(001) of the resistivity of 0.001
Ω×cm in a 28% water-ethanol HF solution. Periodic modulation of porosity was attained by
using the periodically alternating etching current of 40 mA/cm2 and 200 mA/cm2, thus a pe-
riodical modulation of the refractive index of porous silicon in the direction normal to Si(001)
surface was achieved. Using this procedure, a PC consisting of 250 pairs of layers was made.
After that it was thermally annealed for 4 hours at the temperature of 850◦C until the total oxi-
dation of silicon thus forming a 1D PC. The refractive indices of alternating porous fused silica
layers weren1 = 1.43±0.01 andn2 = 1.32±0.01, the period of the structure is 825 nm, the
size of the sample beinga = 0.2 mm,b = 2.3 mm,c ≈ 5 mm (Fig. 1(a)).

20%
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Fig. 2. Schematic view of the experimental setup.

The experimental set-up is shown schematically in Fig. 2. Linearly-polarized radiation of a
Ti-sapphire laser operating at 800 nm wavelength with the pulse duration of 35 fs and repeti-
tion rate of 80 MHz, average power up to 400 mW was used as the fundamental radiation. A
cross-correlation scheme with the signal and the reference arms containing prism compressors
was used. The compressor in the reference arm was fixed to maintain 30 fs reference pulses,
while the compressor in the signal arm could be tuned and formed the chirped pulses with the
duration from 35 fs up to 140-150 fs for the negative (low frequency first) and the positive (high
frequency first) chirp. A linearly chirped pulse can be characterized by the dimensionless chirp
parameterβ [10] given byβ =±

√

(τ/τ0)2−1 [19], whereτ0, τ are the measured full width at
half magnitude (FWHM) of the initial and output chirped pulses duration,± is the chirp sign.
In these terms, theβ values available experimentally range from−4.5 to+4.0. After passing
through a compressor, the laser beam was focused on the facet of the sample into a spot of
20 µm in diameter by a lens withf = 50 mm.

The output beam was gathered by a 25 mm parabolic mirror and focused on a nonlinear
BBO crystal along with the reference beam (Fig. 2, right). The second harmonic signal gener-
ated in a non-collinear geometry was detected by an avalanche photodiode, which allowed to
measure thecross-correlation functionICC(t ′) ∝

∫ ∞
−∞ IS(t)IR(t + t ′)dt, whereIS(t) andIR(t) are

the intensities in the signal and reference channels,t ′ is the delay time between them. In case
of Gaussian pulses, the FWHM of the cross-correlation functionτCC depends on FWHMs of
the signal pulseτS and of the reference pulseτR asτ2

CC = τ2
S + τ2

R. For the constant reference
pulse width of 30 fs, theτS can be reconstructed from theτCC allowing to study the selective
compression of short chirped pulses. The temporal resolution of the set-up evaluated in test
measurements was≈2 fs. The temporal delay between the Borrmann and anti-Borrman pulses
remains constant as there are no dispersion elements between the sample and the BBO crystal.

3. Experimental Results and Discussion

Figure 3 shows the experimental data on cross-correlation functions measured for the values
of the chirp factorβ = −2.2,−0.1,+1.6. It can be seen thatICC shown by black line consists
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of two maxima, which corresponds to the two temporally split pulses, the Borrmann and the
anti-Borrmann. The cross-correlation function maximum centered at approximately−400 fs
corresponds to the faster Borrmann pulse, while the second peak at 350 fs stands for the anti-
Borrmann one. For comparison, cross-correlation functions of the incident pulse measured on
the same set-up by removing the sample from the optical path are shown in the same panels.
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Fig. 3. Cross-correlation functions (black line) of pulses after passing through the PC for
the incident pulse chirp parameter (a)β = −2.2, (b) β = −0.1 and (c)β = +1.6; central
(red line) pulse corresponds to the laser pulse before entering the PC.

It stems from Fig. 3(b) that for almost zero chirp parameter of the incident pulseβ = −0.1
the durations of the two output pulses are almost equal. Note that signs of the output pulses
chirps are different. For the positive chirpβ = 1.6 the width of the Borrmann pulse is approxi-
matelyτB = 87 fs, which is significantly larger than that of the anti-Borrmann oneτaB = 53 fs
and incident pulse ofτ = 70 fs. For the negative chirpβ = −2.2 a controversial effect oc-
curs: the anti-Borrmann pulse broadens up toτaB = 125 fs, and the Borrmann pulse undergoes
compression up toτB = 75 fs in comparison with the initial pulseτ = 89 fs.

Dependencies of the Borrmann and anti-Borrmann pulsewidths on the chirp factor were
measured forβ ranging from−4 to+4. The corresponding dependences are shown in Fig. 4(a)
in comparison with the pulsewidthτ of the input pulse. It can be seen that the the pulsewidth of
the Borrmann pulse exceeds that of the anti-Borrmann one in the case ofp−polarization of the
input radiation, while for positiveβ values and forβ > +1 its width is larger than of the inci-
dent pulse. For negativeβ values the situation is reversed: the Borrmann pulse is compressed as
compared to the anti-Borrmann one and forβ <−1.5 its pulsewidth is also smaller than that of
the incident pulse. In other words, the effect of selective compression is observed, which mani-
fests itself by the shortening of the anti-Borrmann (Borrmann) pulses for the positive (negative)
β values.

This result is in a qualitative agreement with the analytical theory based on the two-wave
approximation [10]. At the same time, this approximation is valid for thequantitative descrip-
tion of the pulse propagation only in the case of a relatively narrow spectrum (τ > 60 fs for
non-chirped pulse). Therefore we used a numerical simulation (FDTD) for the quantitative de-
scription of the effect as in our experiment the laser pulses are about 30 fs in duration.

The simulation of the selective compression effect was performed using FDTD method and
our own code based on [20]. Figure 4(b) shows the corresponding FDTD results calculated
for the parameters realized in the experiments in case ofp−polarization of the incident pulse.
The compression of the anti-Borrmann pulse occurs atβ > +1 and the compression of the
Borrmann pulse takes place forβ < −1, which correlates with the experiment. Figure 4(c)
shows the comparison of the measured intensity of the pulse withβ = −2.2 passed from the
crystal (black line) and the calculated one, which shows an excellent quantitative agreement of
the theory and the experimental results. The effect of selective compression of the chirped laser
pulses is observed also for thes−polarized fundamental pulsed radiation, as is shown in Fig.
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(a) Experiment, p-polarization (b) FDTD, p-polarization

(c) (d) Experiment, s-polarization
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Fig. 4. (a) Experimental and (b) theoretical dependencies of the Borrmann and anti-
Borrmann pulsewidths on the chirpβ of the incident pulse in comparison with the initial
pulsewidth forp−polarization of incident pulse. (c) Experimental (black line) and theo-
retical (red line) temporal functions of the pulse intensity forβ = −2.2. (d) Experimental
dependence of Borrmann and anti-Borrmann pulsewidths on the chirp of incident pulse in
comparison with the initial pulsewidth fors−polarization of incident pulse.

4(d). The effect is qualitatively similar to the case of p-polarized fundamental radiation, while
the modulation of the pulsewidths is smaller. The critical chirp values, which correspond to the
equal values of the pulsewidths of the incident and the output pulses, are also higher and are
β & 1.5.

4. Conclusion

The temporal Bragg diffraction-induced splitting of femtosecond optical pulses withfrequency
modulated phase under the dynamical Bragg diffraction in the Laue scheme in 1D photonic
crystal has been studied experimentally. We demonstrate that depending on the chirp sign, the
compression of either Borrmann or anti-Borrmann pulses is attained. This effect of selective
compression of the separated chirped pulses was first observed. The experimental results are in
good agreement with theoretical prediction [10] and with FDTD numerical simulation carried
out here. The selective compression of optical pulses can be used to considerably increase
the yield of nonlinear processes (harmonic generation, two-photon absorption, nonlinear phase
modulation, etc.) in PCs by increasing the intensity of the Borrmann or anti-Borrmann pulse
by more than an order of magnitude if the value of the chirp is large enough. Addition, the
parameters (duration, amplitude, phase, etc) of the Borrmann and anti-Borrmann pulses can be
controlled independently.
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