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Nonlinear interaction of coherent intensive optical radiation with continuous resonant photonic crystal (RPC) is
analytically and numerically studied in the framework of semiclassical approach using the two-wave Maxwell–
Bloch equations. The analytical solution being the gap soliton of self-induced transparency is obtained in the case
of an initially unexcited continuous RPC. This solution is confirmed numerically. Influence of both initial inver-
sion and resonant atom concentration function profile on the pulse dynamics in continuous RPC is analyzed.
Suppression of the Bragg reflection and a “quasi-linear” 2π pulse propagation in the case of zero initial inversion
in continuous RPC is shown. The possibility of laser pulse compression using slow spatial changing of resonant
atom concentration is demonstrated. © 2013 Optical Society of America
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1. INTRODUCTION
Taking into account nonlinearity in the interaction of electro-
magnetic waves with periodic media, or photonic crystals
(PC), allowed for significant change to the current concep-
tions of solitary wave propagation dynamics in such struc-
tures [1–3]. It was shown that within the linear photonic
band gap there can propagate nonlinear solitary waves, so
called gap solitons, in photonic crystals with different types
of nonlinearity: resonant [4–8], cubic [9–13], and quadratic
ones [14,15]. The trapped gap solitons with amplitudes less
than freely propagating pulse amplitude can oscillate inside
a PC [16,17] and interact with exact solitons inelastically
[18–20]. Essential part of these results [4–8,16–20] was ob-
tained during a study of the discrete resonant photonic crys-
tals (RPCs) model [4], a so-called resonant Bragg grating,
where resonant two-level atoms are localized in periodically
situated thin layers divided by homogeneous or periodic linear
dielectric medium. This model of the δ-function nonlinear gra-
ting allowed for the obtaining of simple analytical solutions of
some difficult nonlinear dynamic problems, but for the analy-
sis of experimental data we need more realistic model.
A relevant model is a continuous RPC, that is, the structure
with the periodic continuous function of resonant atom con-
centration; for example, PC made of porous glass [21,22] filled
with a gas of resonant two-level atoms. Optical phenomena in
such media for the present are poorly studied. Only one par-
ticular case of continuous RPC with harmonic modulation of
resonant atom concentration was considered [23]. It was
shown theoretically that, in this structure, propagation of
the gap solitons of self-induced transparency (GS SIT) is al-
lowed. Nevertheless, in a continuous RPC, qualitatively new
effects can be expected. It is actually well known that, under
conditions of incoherent light–matter interaction in the

homogeneous resonant medium, a refraction index becomes
equal to the linear matrix refraction index if the initial value of
inversion is equal to zero [24]. It means that, in this case, res-
onant atoms do not influence the dynamics of pulse propaga-
tion as if they were absent in the medium. In a continuous RPC
the effect is similar but, in the coherent case, it should lead to
suppression of the Bragg reflection because the reason for the
Bragg reflection in such media is periodicity of function of res-
onant atom concentration.

In this paper, we consider interaction of coherent intensive
optical radiation with continuous RPC having rather arbitrary
distribution of two-level atom concentration in the framework
of the semiclassical approach. Through analytical solving of
the set of the two-wave Maxwell–Bloch (MB) equations, the
existence of the GS SIT in the general case of a continuous
RPC with an arbitrary concentration function is shown. The
pulse formation process in a continuous RPC is studied
and it is also shown that the initial inversion and resonant
atom concentration profile can have a significant effect upon
intensive pulse propagation dynamics. So, in the case of
zero initial inversion in a continuous RPC, the propagation
of a so called “quasi-linear” 2π pulse takes place. The pulse
interacts nonlinearly and coherently with each two-level
atom, but average medium polarization is zero because
of spatial phase mismatching between atom dipole moments
and field wave. As a result, the pulse propagates with
group velocity determined by the linear matrix medium
only. In structures with slowly changing resonant atom con-
centration profiles, essential increase of intensity and com-
pression of soliton-like pulses might be done. The
argumentation of this effect appearance is given; compression
occurs because of energy transfer from backward wave to
passing one.
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2. TWO-WAVE MAXWELL–BLOCH
EQUATIONS AND STATIONARY
SOLUTIONS
Let us consider the coherent interaction of a quasi-
monochromatic intensive laser radiation pulse with a continu-
ous RPC, which is a homogenous dielectric medium matrix
doped with resonant two-level atoms. To solve this problem,
we will use a semiclassical description of light–matter
interaction—classical field interacts with quantum oscillators.
The resonant atom concentration function is assumed to be
the continuous periodical one-dimensional function of the co-
ordinate ρ�x� � ρ�x� d� with the period equal to d. The con-
centration ρ must be small enough to neglect dipole–dipole
interaction of resonant atoms and local field effects. Using
the Maxwell equation, we obtain the wave equation character-
izing propagation of the plane-polarized light along the x axis
in this medium,

Exx�x; t� − εc−20 Ett�x; t� � 4πc−20 PNL
tt �x; t�; (1)

where E is the electric field of light wave; PNL is a small res-
onant polarization, that is, the dipole moment of the unit of the
structure volume provided by doping resonant atoms; ε �
const is the dielectric constant of the homogenous linear ma-
trix; c0 is the light velocity in vacuum; and the subscripts de-
note the partial derivatives to x and t. Polarization PNL is
defined from solution of Bloch equations for the dipole mo-
ment and the inversion of two-level atoms. The central fre-
quency ω is assumed to coincide with the atom-resonant
transition frequency, and the resonant grating period d in
the case of normal incidence of pulses upon the structure
obeys the Bragg condition for the central frequency 2k �
mH or d � mλ∕2, where k � ω∕c � 2π∕λ, c � c0∕

���
ε

p
is the

light velocity in the unmodulated linear medium, H � 2π∕d
is the modulus of reciprocal lattice vector, andm is an integer,
a diffraction order. The satisfaction of the Bragg condition
makes it possible to reduce the number of waves passing
within the structure to two counterpropagating nonlinear
waves strongly coupled with each other, which are called
the Bragg waves. Propagation constants of these nonlinear
waves �k are equal to real parts of effective wave numbers
of the linear Bragg modes within the linear photonic band
gap k � mH∕2. Let us suppose that the pulse duration is large
enough so its spectrum is entirely localized in the photonic
band gap. Then we will seek the solution of the wave equation
in the form of two quasi-monochromatic counterpropagating
waves with complex, slowly varying amplitudes E��x; t�,

E�x; t� � �1∕2��E��x; t�ei�kx−ωt� � E−�x; t�ei�−kx−ωt� � c:c:�;
(2)

where c.c. is the complex conjugate of this expression. The
phase change of the waves propagating in a periodic struc-
ture, which is taken into account in the Floquet–Bloch theo-
rem by the effective wave vector of Bloch waves, here will be
taken into account directly through spatial dependence of
complex wave amplitudes E��x; t�.

Then consider equations for slowly varying amplitudes. For
this purpose, we substitute the solution in Eq. (2) into
Eq. (1) using the slowly varying in time and space envelope
approximation

jE�
x j ≪ jkE�j; jE�

t j ≪ jωE�j;

and get the equation

�E�
x � c−1E�

t �ei�kx−ωt� � �−E−
x � c−1E−

t �e−i�kx�ωt� � c:c:

� −�4πi∕kc20�PNL
tt : (3)

To separate amplitudes E� and their complex conjugate
�E���, it is necessary to multiply Eq. (3) by exp�iωt� and aver-
age it over a time Δt ≫ ω−1 but less than the typical time of
amplitudes E� changing, i.e., the pulse duration. Then we
multiply Eq. (3) in turn by exp��ikx� and average it over a
volume V ∼ λ3 to exclude oscillating terms of order
exp��2ikx�. Consequently, we get the following equation
for counterpropagating wave field amplitudes:

�E�
x � c−1E�

t � −�4πi∕kc20�hPNL
tt eiωte∓ikxiΔt;V ; (4)

where the angular brackets h…iΔt;V denote the averaging over
a time Δt and a volume V . The atomic polarization function
PNL�x; t� in Eq. (4) is determined by matter equations of the
structure.

Let the period of the structure d exceed considerably the
typical distance b between resonant atoms. Then the continu-
ous function of the atomic resonant polarization in the wave
Eq. (4) can be written in the form

PNL�x; t� � PΔV �x; t�
ΔV

� PΔV �x; t�
N

N
ΔV

� P0�x; t�ρ�x�; (5)

where PΔV �x; t� is the total dipole moment of resonant atoms
in a small volume b3 ≪ ΔV ≪ d3 in the region round the x
point and N is the number of resonant atoms in the volume
ΔV . P0�x; t� � PΔV �x; t�∕N � �1∕2��−iμP�x; t�exp�−iωt�� c:c:�
is the average over the ensemble ofN particles dipole moment
of the atom in the x point and μ is the matrix element of the
transition dipole moment. The value of the slowly changing in
time complex amplitude of the normalized atom dipole mo-
ment P�x; t� is obtained from the average over a small volume
ΔV Bloch equations [23]

Pt�x; t� � n�x; t��Ω0��x; t�eikx �Ω0−�x; t�e−ikx�;
nt�x; t� � −RefP��x; t��Ω0��x; t�eikx � Ω0−�x; t�e−ikx�g; (6)

where n�x; t� is the inversion averaged over the ensemble of
atoms in the x point; Ω0��x; t� � �μ∕ℏ�E� are the normalized
wave amplitudes; τc � �ℏε∕2πμ2ρ0ω�1∕2 is the cooperative
time [25], characterizing mean lifetime of the photon in the
resonant medium and defining the size of the linear photonic
band gap in RPC [4]; ρ0 is the dimensional modulation ampli-
tude of the concentration of resonant atoms ρ�x� � ρ0 ~ρ�x�;
and ~ρ�x� is the nondimensional periodic function. Then, sub-
stituting the expression for the polarization [Eq. (5)] into the
equations for slowly varying amplitudes of the counterpropa-
gating waves [Eq. (4)], taking into account that P�x; t� slowly
changes in time jPtj ≪ jωPj and, jointly with Eq. (6), we get
the set of two-wave MB equations for the continuous RPC
in nondimensional variables:

�Ω�
ξ �ξ; τ� �Ω�

τ �ξ; τ� � hP�ξ; τ�~ρ�ξ�e∓ik0ξiλ0 ; (7a)
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Pτ�ξ; τ� � n�ξ; τ��Ω��ξ; τ�eik0ξ �Ω−�ξ; τ�e−ik0ξ�; (7b)

nτ�ξ; τ� � −RefP��ξ; τ��Ω��ξ; τ�eik0ξ �Ω−�ξ; τ�e−ik0ξ�g; (7c)

where Ω��ξ; τ� � �τcμ∕ℏ�E� are the nondimensional normal-
ized wave amplitudes; ξ � x∕�cτc�, τ � t∕τc are the nondimen-
sional space and time coordinates, respectively k0 � 2π∕λ0,
λ0 � λ∕�cτc�; and the angular brackets denote averaging over
the space region Δξ ∼ λ0.

Let us solve analytically the MB Eqs. (7a)–(7c) for the con-
tinuous periodic function of resonant atom concentration ~ρ�ξ�
in the case of the initially unexcited medium: n�ξ; τ � 0� � −1.
The function ~ρ�ξ� is represented as the Fourier series

~ρ�ξ� �
X∞

m�−∞
CmeimH 0ξ; (8)

where H 0 � 2π∕d0, d0 � d∕�cτc�, Cm �
�1∕d0� R d0∕2

−d0∕2 ~ρ�ξ�e−imH 0ξdξ are the Fourier coefficients and
d0 � λ0∕2 due to the Bragg condition. For the sake of simplic-
ity, we will consider only even functions; then

Cm � C−m � �1∕d0�
Z

d0∕2

−d0∕2
~ρ�ξ� cos�mH 0ξ�dξ.

After substituting Eq. (8) into Eq. (7a), we will obtain

�Ω�
ξ �ξ; τ� �Ω�

τ �ξ; τ� �
�
P�ξ; τ�

X∞
m�−∞

Cmeik
0ξ�2m∓1�

�
λ0
: (9)

Further, we multiply Eq. (7a) by exp�ik0ξ�,

Pτ�ξ; τ�eik0ξ � n�ξ; τ��Ω��ξ; τ�e2ik0ξ �Ω−�ξ; τ��; (10)

and then by exp�−ik0ξ�,

Pτ�ξ; τ�e−ik0ξ � n�ξ; τ��Ω��ξ; τ� �Ω−�ξ; τ�e−2ik0ξ�; (11)

and average Eqs. (9)–(11) over the space interval Δξ~λ0. Sup-
posing that n�ξ; � slowly changes within this space interval,
one neglects the averaged oscillating exponents and eventu-
ally obtains the following set of equations:

Ω�
τ �ξ; τ� �Ω�

ξ �ξ; τ� � C1P��ξ; τ� � C0P∓�ξ; τ�; (12a)

P�
τ �ξ; τ� � n�ξ; τ�Ω−�ξ; τ�; (12b)

P−
τ �ξ; τ� � n�ξ; τ�Ω��ξ; τ�; (12c)

nτ�ξ; τ� � −Re�P−��ξ; τ�Ω��ξ; τ� � P���ξ; τ�Ω−�ξ; τ��; (12d)

where P��ξ; τ� ≡ hP�ξ; τ�e�ik0ξiλ0 , C1 � C−1 �
�1∕d0� R d0∕2

−d0∕2 ~ρ�ξ� cos�H 0ξ�dξ, and C0 � �1∕d0� R d0∕2
−d0∕2 ~ρ�ξ�dξ.

The introduced quantities P� and P− have the meaning of
the averaged atom dipole moments, occurring as the response
to the forward and backward Bragg waves respectively; this is

clearly seen from Eqs. (12b) and (12c). Obviously, these quan-
tities characterize the matter polarization.

The obtained set of equations does not contain a spatial
averaging operator; therefore, it can be solved analytically
without additional approaches. We will search the solution
of Eqs. (12) in the form of stationary solitary waves

Ω��ξ; τ� � Ω�
0 sech

�
ξ − vτ
vτp

�
; (13)

where Ω�
0 are unknown amplitudes of forward and backward

waves, v is the pulse velocity normalized to the light velocity
in vacuum c, and τp is the pulse duration normalized to τc.

Let C1 not equal C0. Expressions for P��ξ; τ� are derived
from Eqs. (12a) and (13),

P��ξ; τ� � � C
vτp

�C0�1� v�Ω∓

0 � C1�1∓v�Ω�
0 �sechφthφ;

(14)

where C � 1∕�C2
0 − C2

1�, φ � �ξ − vτ�∕vτp. Substituting
Eqs. (13) and (14) into Eqs. (12b) and (12c), we obtain the
ratio of amplitudes α � Ω−

0∕Ω
�
0 ,

α1;2 �
−C0 �

���������������������������������
C2

0 − C2
1�1 − v2�

q
C1�1� v� ; (15)

depending on velocity v. Taking into account Eqs. (13) and
(15) we obtain n and Ω�

0 from the Bloch Eqs. (12b)–(12d)

n � −
C
vτ2p

�C0�1 − v� � C1α�1� v���1 − 2 sech2 φ�; (16)

Ω�
0 � 2

τp

����������������������������������������������������������������
C0�1 − v� � C1α�v� 1�

C0�1 − v − α2�1� v�� � 2C1αv

s
: (17)

Using the condition of pulse localization n�ξ � �∞; τ� � −1,
we get from Eq. (16)

τ2p � C
v
�C0�1 − v� � C1α�1� v��: (18)

Only value α � α1 in Eq. (15) has a physical meaning,
because introducing α � α1 into Eq. (18) leads to the physi-
cally correct inequality τ2p > 0 whereas, assuming α � α2,
we get τ2p < 0. Finally one obtains the following analytical
solution:

Ω� � Ω�
0 sechφ;

P� � C
vτp

�C1�1 − v�Ω�
0 � C0�1� v�Ω−

0 �sechφthφ;

P− � −
C
vτp

�C0�1 − v�Ω�
0 � C1�1� v�Ω−

0 �sechφthφ;

n � C
C0v −

���������������������������������
C2

0 − C2
1�1 − v2�

q
vτ2p

�1 − 2 sech2 φ�; (19a)

where
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τp �
�������������������������������������������������������������
C
v

� ���������������������������������
C2

0 − C2
1�1 − v2�

q
− C0v

�s
; (19b)

Ω�
0 � 2

τp

�����������������������������������������������������������������
C0�1 − v� � C1α�v� 1�

C0�1 − v − α2�1� v�� � 2C1αv

s
; Ω−

0 � αΩ�
0 ;

(19c)

α �

���������������������������������
C2

0 − C2
1�1 − v2�

q
− C0

C1�1� v� : (19d)

In spite of the fact that wavelength precisely satisfies the
Bragg condition, the solution (19) presents the stationary soli-
tary wave which propagates through the structure keeping its
amplitude, profile, and velocity. The obtained solution thus
corresponds to the GS SIT in the continuous RPC with an
arbitrary function of resonant atom concentration.

It results from Eqs. (19b)–(19d) that limv→0Ω�
0 → 0, i.e., in

the case of an even periodic function of atom concentration
~ρ�ξ�, the set of two-wave MB equations does not have the zero-
velocity solution in the form of the standing soliton existing in
the discrete resonant grating [4]. It is to be expected that
pulses propagating with small velocities in the medium with
such function ~ρ�ξ� would be unstable.

Note that retaining in Eq. (12a) by averaging only terms in-
cluding the Fourier coefficients C0, C1, and C−1, we in fact
reduce any periodic even function ~ρ�ξ� to the form
~ρ�ξ� � C0 � 2C1 cos H 0ξ, H 0 � 2k0, so implying that the
Fourier coefficients of higher orders Cm, jmj ≥ 2, give a
negligible contribution into the analytical solution. To find
out to what extent this supposition is valid, we have per-
formed the direct numerical integration of the two-wave
MB Eqs. (7), followed by comparison of analytical and numeri-
cal solutions.

At numerical solving of the two-wave MB Eqs. (7), the func-
tion of resonant atom concentration in the structure was
taken as ~ρ�ξ� � �1� cos3 2k0ξ�∕2. In Figs. 1(a) and 1(b), the
analytically calculated dependences of the pulse amplitudes
Ω�

0 on the pulse velocity v are shown by solid lines. The am-
plitudes are normalized to the values Ω�

0 at v � 0.92. The
circles indicate values of the normalized amplitudes obtained
by numerical solving of the MB equations under the following
initial and boundary conditions:

Ω��ξ; τ � 0� � 0; P�ξ; τ � 0� � 0; n�ξ; τ � 0� � −1;

Ω��ξ � 0; τ� � Ω�
0 sechφ;Ω−�ξ � L; τ� � 0; (20)

where L is the nondimensional length of the resonant struc-
ture. Numerical simulation was carried out with the method of
characteristics. The figures show good coincidence of the ana-
lytical and numerical solutions in the case of large pulse veloc-
ities. The gap soliton of SIT is formed in the structure very
quickly at the depth about pulse length. This effect is well seen
from Figs. 1(c) and 1(d), where formation and propagation of
gap solitons are shown. Nevertheless, a natural question
arises why the values Ω−

0 obtained numerically at velocities
v < 0.8 do not coincide with the analytical results at the same
velocities.

As mentioned previously, the absence of a zero-velocity sol-
ution of the set of two-wave MB equations gives evidence of
possible instability of pulses propagating with small velocities.
The numerical solution is actually unstable at v < 0.8 [corre-
sponding circles in Fig. 1(b)]. In Figs. 1(a) and 1(b), the values
of stable pulse amplitudes at v ≥ 0.8 are demonstrated.

Note that the Fourier coefficients C1 and C0 are equal to
each other only for the profile of concentration of resonant
atoms having a form of a grating of δ-functions, that is, the dis-
creteRPC. In this case, Eqs. (12) are inapplicable because aver-
aging of the right-hand part of Eq. (7a) results in the equation in
the form Pτ�ξ; τ� � n�ξ; τ��Ω��ξ; τ� �Ω−�ξ; τ�� [4], replacing
Eqs. (12b) and (12c). In a discrete RPC, a slow gap soliton
can be stable at a low velocity down to zero velocity [4,16].

We will next show that through changing parameters of the
structure, namely the initial inversion and the profile of res-
onant atom concentration, one can control pulse dynamics
and their parameters.

3. PULSE DYNAMICS CONTROL USING
INITIAL EXCITATION OF THE RESONANT
MEDIUM AND CHANGING OF THE ATOM
CONCENTRATION PROFILE
To analyze influence of initial inversion population value on
the propagating pulse dynamics in the continuous RPC,
numerical integration of the set of MB Eqs. (7) was carried
out for two cases: initially unexcited medium with inversion
n�ξ; τ � 0�≡ n0 � −1 and medium with zero initial inversion
n0 � 0. In the first case, the initial and boundary conditions
are described by Eq. (20); for the second case, we take the
conditions

Ω��ξ; τ � 0� � 0; P1�ξ; τ � 0� � 0;

P2�ξ; τ � 0� � 1; n�ξ; τ � 0� � 0;

Ω��ξ � 0; τ� � Ω�
0 sechφ;Ω−�ξ � L; τ� � 0;

Fig. 1. Dependencies of amplitudes of (a) forward Ω� (arb. units)
and (b) backward Ω− (arb. units) waves on pulse velocity v. Continu-
ous lines show dependencies calculated from formulas in Eq. (19);
circles show values of amplitudes, obtained through numerical inte-
gration of the MB Eqs. (7). (c) Dynamics of the sum of amplitudes
Ω� � Ω− of two counterpropagating gap solitons with equal velocities
v � 0.95, and (d) corresponding inversion of resonant atoms n.
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where P1 � ReP, P2 � ImP. Input pulse amplitudes and du-
rations were selected such that the pulse area would be equal
to 2π. The atom concentration was selected in the
form ~ρ�ξ� � �1� cos 2k0ξ�∕2.

The results of numerical integration are shown in
Figs. 2(a)–2(c). The incident pulse amplitudes are the same in
both cases n0 � −1 and n0 � 0 [Fig. 2(a)]. In Figs. 2(b)
and 2(c), one can see that the backward wave amplitudes dif-
fer dramatically. The forward and backward wave dynamics
in the first case correspond to the GS SIT with velocity
v � 0.94. In the second case, the backward wave amplitude
Ω−�ξ � 0; τ� is negligibly small in comparison with the corre-
sponding incident wave amplitude Ω��ξ � 0; τ� and the ampli-
tude of the backward wave forming in the case of initially
unexcited atoms n0 � −1. Within the structure, the pulse
forms and the values of the amplitudes are similar to that
shown in Fig. 2. This result indicates that, at the boundary
and in the bulk of the structure, the suppression of both
the total Bragg reflection and photonic band gap occurs if
n0 � 0. Consequently, a pulse in a resonant periodic structure
does not slow down like the gap soliton but propagates in the
same way as pulses in a linear homogenous medium, namely
with the velocity equal to light velocity in the linear matrix.

The pulse propagating in the structure includes the fieldΩ�

of the forward wave and atom excitation. The backward wave
Ω− in the structure does not exist. Thereby, under fixed initial
conditions n0 � 0, the Bragg reflection is suppressed and en-
ergy exchange occurs only between the propagating wave and
resonant atoms of the structure. The appearance of this effect
is due to fundamental difference between the spatial distribu-
tion of the mean atom dipole moment and inversion in this
case and those in the case of initially unexcited medium
(Fig. 3). Actually, Eq. (7b) shows that, at n0 � −1 and
P�ξ; τ � 0� � 0, the changing rate of dipole moment Pτ is large
and therefore field Ω� imposes its phase k0ξ on the dipole mo-
ment P�ξ; τ�. Then inversion n�ξ; τ� will be a slowly varying
function in space [Eq. (7c)]. On the contrary, in the case of
initial conditions n0 � 0 and P�ξ; τ � 0� � 1, fieldΩ� imposes
its space phase k0ξ on inversion n�ξ; τ� [Eq. (7c)]. In this case,
P�ξ; τ� oscillates in space with a doubled frequency as
exp�2ik0ξ� [Eq. (7c)]. This leads to zero average polarization
in right-hand part of Eq. 7(a) and to zero response of resonant
structure. It is shown below that the obtained numerical re-
sults coincide well with the analytical solution of Eqs. (7).

Let us obtain an analytical solution of the two-wave MB
Eqs. (7) under the condition of zero initial inversion for a peri-
odic ~ρ�ξ�with a period d0 � λ0∕2. Results of the numerical sim-
ulation let us search an automodel solution in the form

Ω−�ξ; τ� � 0; Ω��ξ; τ� � Ω��φ�; (21)

which is a solution in the form of a pulse having an arbitrary
but invariant profile which is defined by initial conditions.
Then

Ω�
ξ � 1

vτp
Ω�

φ ; Ω�
τ � −

1
τp

Ω�
φ ; (22)

where the subscript φ indicates a partial derivative with re-
spect to φ. Representing P as P � P1 � iP2, where P1;2 are
real functions, reduce Eqs. (7b) and (7c) to the Bloch equa-
tions containing P1, P2, and n,

P1τ � nΩ� cos k0ξ;

P2τ � nΩ� sin k0ξ;

nτ � −Ω��P1 cos k0ξ� P2 sin k0ξ�: (23)

It is easy to check that the Eqs. (23) exhibit the conservation
law

P2
1 � P2

2 � n2 � 1 (24)

for the length of the Bloch vector R � �P1; P2; n�, jRj2 � 1
[Fig. 4(a)].

The Bloch Eqs. (23) are equivalent to one vector equation

Rτ � �Ω0 × R�; (25)

where the torque vector is given by Ω0 � �Ω1;Ω2;Ω3�:

Ω1 � −Ω� sin k0ξ; Ω2 � Ω� cos k0ξ; Ω3 � 0:

Thereby, the vector Ω0 lies in the plane formed by the axes
P1 and P2 [Fig. 4(b)]. The vectorR rotates aroundΩ0 so that its
end draws a circle, the Bloch vector itself by rotation draws a
cone. The angle α between vectors R and Ω0 is equal to k0ξ at
any time.

To solve the vector Eq. (25), let us pass on to the coordinate
system with new axes P0

1, P
0
2, and n0, rotated with respect to

the old coordinate system by α � k0ξ around the axis n.
Thereby, the axis P0

2 is directed along the vector Ω0 and the
axis n0 coincides with the axis n.

In the new coordinate system, we seek the solution in the
form

P0
1 � sin α cos θ; P0

2 � cos α; n0 � − sin α sin θ;

(26)

where θ � θ�ξ; τ� is an angle taken from the point A anticlock-
wise [Fig. 4(c)]. The circle drawn in the figure is a trajectory of

Fig. 2. Dependencies on the nondimensional time coordinate τ � t∕τc of wave amplitudes at the left boundary of the structure ξ � 0 obtained
using numerical simulation of the MB Eqs. (7): (a) forward wave Ω��ξ � 0; τ� (arb. units), (b) backward wave Ω−�ξ � 0; τ� in the case of n0 � −1,
and (c) backward wave Ω−�ξ � 0; τ� in the case of n0 � 0.
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the end of the Bloch vector in the plane P0
1, n

0 and its radius
equals R sin α. Initially, an end of the Bloch vector is in the
point A, θ�ξ; τ � 0� � 0.

Transition to the original coordinate system is accom-
plished by means of the rotation matrix

0
@P1

P2

n

1
A �

0
@ cos α − sin α 0
sin α cos α 0
0 0 1

1
A
0
@P0

1
P0
2

n0

1
A: (27)

Finally, introducing Eq. (26) into Eq. (27), we obtain

P1 � −�1∕2� sin 2α�1 − cos θ�;
P2 � sin2 α cos θ� cos2 α;

n � − sin α sin θ: (28)

Introducing Eqs. (28) into the Bloch Eqs. (23), we get the
connection between an angle θ and a propagating wave
amplitude Ω�,

θ�ξ; τ� �
Z

τ

−∞
Ω��ξ; τ0�dτ0: (29)

As the mean atom dipole moment P [Eq. (28)] has the
spatial phase 2α � 2k0ξ, the right-hand part of Eq. (7a),

by averaging, becomes a zero value due to spatial phase
mismatching between atom dipole moments and field wave.
Zeroing of the right-hand part leads to suppression of the
Bragg reflection Ω−�ξ; τ� � 0 and to invariance of the propa-
gating wave profile Ω��ξ; τ� � Ω��φ� while it passes through
the RPC.

Finally, the solutions (21), (28), and (29) of the MB Eqs. (7)
under the condition of zero initial inversion n0 � 0 is

Ω��ξ; τ� � Ω��φ�;
Ω−�ξ; τ� � 0;

P1�ξ; τ� � −�1∕2� sin 2k0ξ�1 − cos θ�ξ; τ��;
P2�ξ; τ� � sin2 k0ξ cos θ�ξ; τ� � cos2 k0ξ;

n�ξ; τ� � − sin k0ξ sin θ�ξ; τ�:

If the pulse area Eq. (29) is θ � 2π, the state of excited
atoms after pulse passing does not change because the
Bloch vector is rotated for 2π by the pulse and then returns
back to its initial state: P1 � 0, P2 � 1, n � 0. So a quasi-
linear 2π pulse propagates in the Bragg structure. Each
atom response is nonlinear because atom dipole moment
and inversion have a nonlinear dependence on the field
[Eq. (28)], but average resonant medium polarization is zero
and pulse propagates as in a linear medium. Unlike a non-
linear GS, the form of the quasi-linear 2π pulse may be ar-
bitrary but its area must be equal to 2π. The obtained
analytical solution is in good agreement with numerical
one (Fig. 5).

The analogous effect in the case of n0 � 0 is also observed
under incoherent initial pump when the dipole moment
phases of resonant atoms are random in the initial moment
of time. In this case, a pulse propagates also with velocity
equal to the light velocity in a linear matrix without Bragg
reflection.

Let us show that, in a continuous RPC, changing of reso-
nant atom concentration profile can enlarge pulse intensity
and simultaneously reduce its duration. For this purpose,
we carry out numerical integration of the set of Eqs. (7) with
the following initial conditions:

Ω��ξ; τ � 0� � Ω�
0 sechφ;

P1�ξ; τ � 0� � P0 sechφthφ cos k0ξ;

P2�ξ; τ � 0� � P0 sechφthφ sin k0ξ;

n�ξ; τ � 0� � −1� 2 sech2 φ;

Ω��ξ � 0; τ� � 0; Ω−�ξ � L; τ� � 0:

Fig. 3. Spatial dependencies of P1�ξ�, P2�ξ�, n�ξ�, and the function of
resonant atom concentration ~ρ�ξ� within the propagating pulse at
some moment under condition (a), (b) n0 � −1 and (c), (d) n0 � 0.
These dependencies have been obtained using numerical solving of
the MB Eqs. (7); ξ∕d0 � x∕d is the spatial coordinate in units of the
structure period d.

Fig. 4. (a) Bloch sphere. (b) Rotation of the Bloch vector R around
the vector Ω0 under the condition of R�ξ; τ � 0� � �0; 1; 0�. (c) Trajec-
tory of the Bloch vector end in the plane P0

1, n
0. Initially, the Bloch

vector end is in the point A.

Fig. 5. Spatial dependencies P1�ξ� and P2�ξ� in the case of n0 � 0:
(a) the analytical solution, (b) the numerical solution. ξ∕d0 � x∕d is
the spatial coordinate in units of the structure period d.
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We take the following resonant atom concentration profile:

~ρ�ξ� �
XL∕d0
m�0

a sech�ak0ξ�~δ�ξ −md0�; (30)

where function ~δ�ξ −md0� equals 1 at ξ ∈ �md0 � d0∕2� and
zero at any other point.

Parameter a defines both a profile amplitude and a profile
width. Thus, changing a, we conserve the number of resonant
atoms within the period of the structure. The structure con-
sists of two parts. Over 1400 periods in the beginning of
the structure a � 8 and, as it is shown above, a soliton forms
within this segment. The pulse velocity v � 0.68 and its dura-
tion τp � 0.46. Then we slowly lessen an amplitude of the pro-
file modulation [Eq. (30)] until the value a � 2 in the region of
the length ΔL � 800d0. The pulse accelerates to velocity 0.88,
its forward wave amplitude increases, and the backward one
becomes smaller. In Fig. 6, the dependencies of the counter-
propagating Bragg wave amplitudes Ω� and Ω− on time at the
input of the excited region ξ∕d0 � 1400 and at the output of
the structure (ξ∕d0 � 2200) are shown. Pulse compression
at half height is nearly 40%; its intensity increase is also
40%. It is well seen from Fig. 6 that pulse amplitude increases
not only due to pulse compression but and because of energy
transfer from backward wave to the forward one. This effect
appears within the linear photonic band gap since slow adia-
batic pulse duration reduction keeps the pulse spectrum
within the band gap. The band gap does not allow “linear
radiation” to leave the pulse, even under changing of the
soliton-like amplitude envelope profile. Due to nonlinearity
of interaction, the radiation also does not stay in the structure
in the form of a standing wave.

4. CONCLUSION
In conclusion, the theory of interaction of intensive coherent
radiation with a continuous RPC having an arbitrary resonant
atom concentration profile, developed in this paper, allows
one to generalize some nonlinear effects (nonlinear Bragg re-
flection, gap soliton, super-radiance) obtained earlier in a dis-
crete RPC to a wide class of the structures. Pulse dynamics in
a continuous RPC is essentially influenced by the initial exci-
tation of resonant atoms. If the atoms are not excited initially,
radiation propagates in the form of the gap soliton of self-
induced transparency while, in the case of zero initial inver-
sion, the Bragg reflection for the 2π pulse is suppressed
entirely and a backward wave does not exist. The pulse coher-
ently propagates in the Bragg structure as a quasi-linear 2π
pulse. The same coherent effect of a quasi-linear 2π pulse

propagation can also be observed in a homogeneous unmodu-
lated medium. The possibility of compression of laser pulses is
shown under slow changing of the amplitude of concentration
of resonant atoms in a continuous RPC. It can be expected
that the well-designed profile of the periodic concentration
of resonant atoms, allowing solitons to have quite small veloc-
ity, may help even more effective pulse compression and in-
tensity increase. The possibility of pulse parameter control
using changing of the initial conditions and structure profile
is of a great applied interest.
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