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The polarization effects in the diffraction-induced pulse splitting (DIPS) observed under the dynamical Bragg
diffraction in the Laue geometry in linear one-dimensional photonic crystals (PCs) are studied theoretically
and experimentally. It is demonstrated that the characteristic length of the laser pulse path in a PC, or splitting
length, used to describe the temporal pulse splitting, as well as the number of the outgoing femtosecond pulses, are
influenced significantly by the polarization of the incident laser pulse. We have observed that the characteristic
splitting time in porous quartz PCs for the s-polarized probe pulse is approximately 1.5 times smaller as compared
with that measured for the p-polarized radiation. These results are supported by the theoretical description and
ensure that the polarization sensitivity of the DIPS effect is due to a large lattice-induced dispersion of the PC. It is
also shown that the number of output pulses can be varied from two up to four in both transmission and diffraction
directions depending on the polarization of incident femtosecond pulses. © 2013 Optical Society of America
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1. INTRODUCTION
Photonic crystals (PCs) that are spatially periodic structures
with the period comparable with the wavelength of light have
been intensively studied in last two decades. They reveal a
number of novel optical effects that are prospective for the
development of new methods for the operation over the
parameters and the dynamics of laser pulses [1–3]. Thus, it
has been demonstrated that the propagation of laser pulses
with a wavelength that is close to the spectral edge of the pho-
tonic band gap results in a strong localization of light within
the structure [4] and in a drastic decrease of the group velocity
(“slow light”) [5–7]. As a direct consequence of these effects, a
significant amplification of the efficiency of the nonlinear-
optical effects in PC structures [8,9], as well as the decrease
of the excitation threshold in PC-based lasers [10], was
achieved. It has been shown that the so-called gap solitons
can exist under the nonlinear interaction of laser pulses with
PCs [2,11]. The gap solitons are the nonlinear solitary waves
that propagate at the frequency within the linear photonic
band gap and that keep their shape and energy during the
propagation and after the interaction. The pendular effect,
i.e., a periodic oscillation of the energy between propagation
and diffraction in a PC wave, was also observed in PC struc-
tures [12–15]. This effect is of special interest for an all-optical
switching of laser pulses propagating in a PC. Recently, a
novel optical diffraction phenomenon of diffraction-induced
laser pulses splitting (DIPS) under the dynamical Bragg dif-
fraction in the Laue scheme of diffraction in a linear one-
dimensional (1D) PC was described theoretically [16,17]
and then observed experimentally [18]. In that case, the laser

pulses are incident on the structure as is shown in Fig. 1 and
propagate within a PC under the Bragg diffraction condition
parallel to the layers. It was shown [16–18] that, in this case, a
laser pulse inside a PC can be split into two pulses that cor-
respond to the two eigenmodes of the electromagnetic field
inside a PC, the so-called Borrmann and anti-Borrmann opti-
cal modes. The first one is localized predominantly inside the
layers with smaller value of the refractive index, while the
latter one is ocalized in those with larger refractive index.
Consequently, the pulses of these modes propagate within
a PC with different group velocities and, thus, a temporal split-
ting of a short incident laser pulse can be observed. At the
same time, the effect of the polarization of incident radiation
on the DIPS effect has not been studied.

In this paper the polarization effects in diffraction-induced
pulse splitting (DIPS) in porous-quartz-based 1D linear PCs
under the dynamical Bragg diffraction in the Laue geometry
are studied both experimentally and theoretically. We de-
monstrate that the difference in the group velocity of the
Borrmann and anti-Borrmann modes is substantially different
for the p- and s-polarized pulsed radiation due to a large
lattice-induced dispersion in a PC. This leads to a significant
change in the value of the temporal splitting for p- and
s-polarized laser pulses propagating within a PC and, in gen-
eral, in the number of the outgoing pulses as well. After pass-
ing a PC the number of outgoing pulses can be varied from
two up to four in both transmission and diffraction directions,
depending on the polarization of the incident radiation and the
parameters of a PC. We also show that an important point here
is that, due to a large value of the lattice-induced dispersion in
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the PC, not only the first term in the expansion of the polari-
zation factor should be considered but the second one as well,
which describes the unusual polarization dependence of the
DIPS effect. The results of the theoretical description stay in a
good agreement with obtained experimental data for a 1D
porous quartz multilayer PC.

2. DYNAMICAL DIFFRACTION OF A
LINEAR POLARIZED LASER PULSE IN A PC
AT THE LAUE SCHEME OF DIFFRACTION
(THEORY)
Let us consider a 1D PC that consists of optically isotropic,
periodically alternating layers of the thicknesses d1, d2 and
refractive indices n1, n2 oriented perpendicularly to the PC
surface (Fig. 1). A spatially confined light pulse is incident
on the PC at an angle θ to the normal to its surface; the electric
field of the pulse is described by

Ein�r; t� � einEin�r; t� exp�ik0r − iω0t�; (1)

where Ein�r; t� is the slowly varying complex amplitude, ein is
the unit vector of the polarization plane, ω0 is the central fre-
quency and k0 � jk0j � ω0∕c � 2π∕λ0, λ0 is the central wave-
length of the optical pulse, c is the speed of light in vacuum,
projections of the central wave vector k0 are k0x � k0 sin θ,
k0z � k0 cos θ, and the x and z axes lie in the plane of inci-
dence and are directed parallel and perpendicularly to the
PC surface, respectively, as is shown in Fig. 1. For simplicity,
we consider the parameters of the laser pulse and of the PC
structure to be constant along the y axis.

Under these conditions the field of the incident pulse
[Eq. (1)] at the PC surface (z � 0) can be represented as a
two-dimensional (2D) Fourier decomposition, i.e., as a set of
plane monochromatic waves with the amplitudes Ein�kx;ω�,
frequencies ω � ω0 � Ω, and wave vectors k, where
jkj≡ k � ω∕c, the k projections being defined by
kx � k0x � K , kz � ��ω∕c�2 − k2x�1∕2:

Ein�x; t� �
Z

∞

−∞

Z
∞

−∞
Ein�kx;ω� exp�ikxx − iωt�dkxdω; (2)

where the spectral frequency-angular amplitudes, for exam-
ple, in the case of s-polarization are

Ein�kx;ω� � einEin�k;Ω�

� ein
1

4π2

Z
∞

−∞

Z
∞

−∞
Ein�x; t� exp�−iKx� iΩt�dxdt:

(3)

The complex field E�r; t� in a dielectric nonmagnetic PC
obeys the wave equation

∇ ×∇ × E�r; t� � ε�x�
c2

∂2E�r; t�
∂t2

� 0; (4)

where ∇ is the Nabla operator and ε�x� � n2�x� is the
complex permittivity that is spatially modulated within a
PC. We will represent the refractive index of the medium
n�x� in a PC as

n�x� � na � Δn�x�;

where the average refractive index is introduced as

na � �n1d1 � n2d2�∕d � n2 � ξδ;

δ � n1−n2 being the modulation of the refractive index,
ξ � d1∕d, and d � d1 � d2 is the period of the structure.
The function Δn�x� is Δn�x� � �1 − ξ�δ in the layers of the
thickness d1 and Δn�x� � −ξδ in the layers of the thickness d2.

The left-hand part of Eq. (4) is∇ ×∇ × E�r; t� � −ΔE�r; t��
∇�∇E�r; t��, where Δ � ∂2∕∂x2 � ∂2∕∂z2 is the Laplace oper-
ator, and∇E � −ε−1�∇ε�E. The gradient∇ε ≠ 0 in a structure
with spatially modulated permittivity ε�r�, therefore, the field
divergence∇E ≠ 0 and a plane electromagnetic wave with ar-
bitrary polarization is not transverse. In other words, the vec-
tor E has a nonzero projection on a wave vector. In that case,
it is more convenient to pass on from Eq. (4) to the wave equa-
tion for the magnetic fieldH�r; t�, which is transverse in a non-
magnetic medium so that the wave equation takes the form

ΔH�r; t� �∇ε

ε
×∇ ×H�r; t� − ε�x�

c2
∂2H�r; t�

∂t2
� 0: (5)

Let us consider the case of a narrow enough spectrum of the
incident pulse [Eq. (3)], when the spectrum is within the Bragg
frequency band, and assume that the central frequency ω0 is
close to the fulfillment of the Bragg condition 2k0 sin θB � h,
where h �

��hj � 2π∕d is the magnitude of the reciprocal lattice
vector h, and θB is the Bragg angle for radiation with a central
frequency ω0. Then the diffraction can be described within a
two-wave approximation when the electromagnetic waves in-
side a PC are represented by two “strong” waves—the trans-
mitted and diffracted ones—with the wave vectors q0 and
qh � q0 � h for each spectral frequency-angular field compo-
nent. Thus, the total field inside a 1D PC is a coherent super-
position of the transmitted (H0, E0) and diffracted (Hh, Eh)
pulse fields:

H�r; t� � H0�r; t� �Hh�r; t�;
E�r; t� � E0�r; t� � Eh�r; t�: (6)

The magnetic component of the electromagnetic field in a
PCcanbepresented in the formof a 2DFourier decomposition:

Fig. 1. Schematic diagram of the diffraction-induced pulse
splitting within 1D PC at the Bragg diffraction in the Laue
geometry.
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Hg�x; z; t� �
Z

∞

−∞

Z
∞

−∞
Hg�K;Ω�

× exp�i�q0x − g�x� iqzz − iωt�dKdΩ; g � 0; h;

(7)

i.e., as a set of plane monochromatic waves with the spectral
amplitudesH0;h�K;Ω� and wave vectors q0 � q0xex � qzez and
qh � q0 � h � �q0x − h�ex � qzez, where h � −hex. Here ei are
the unit vectors of the coordinate axes. A similar expression
can be written for the electric component of the field
E0;h�x; z; t� with the spectral amplitudes E0;h�K;Ω�. The x pro-
jections of the wave vectors q0x in Eq. (7) are determined from
continuity of the tangential components of the wave vectors
q0x � kx � k0x � K on the surface of the PC (at z � 0). The
zprojections qz � qz�K;Ω�of thewave vectors are determined
from Eq. (5).

Let us consider the solution of the wave equation [Eq. (5)]
in the two-wave approximation [Eq. (6)]. Periodical functions
in the second and third terms of Eq. (5) can be expanded in
Fourier series in the reciprocal lattice vectors. When keeping
the terms in the series that correspond to the two-wave
approximation [19], the permittivity ε�x� takes the form

ε�x� � χ0 � χh exp�−ihx� � χ−h exp�ihx�; (8)

where χ0, χh, and χ−h are the Fourier components of the
permittivity:

χg �
1
d

Z
d

0
ε�x� exp�igx�dx; g � 0; h;−h;

which are defined for a multilayer structure by the relations

χ0 � n2
a � δ2�ξ − ξ2�;

χh � i
π

�
naδ� δ2

1 − 2ξ
2

�
�1 − exp�i2πξ��;

χ−h � −
i
π

�
naδ� δ2

1 − 2ξ
2

�
�1 − exp�−i2πξ��:

It should be emphasized that the quantity η � χ∕χ0
(χ ≡ jχ�hj) is a small parameter η ≪ 1 even if the modulation
of the refractive index is quite significant, δ < 0.3 and
na > 1.3, which is close to the experimental conditions dis-
cussed in the next section.

By analogy with the expansion of ε�x�, the periodic function
ν�x�≡ ε�x�−1∇ε�x� can also be presented as a series in the
reciprocal lattice vectors. When keeping the terms in the
series that correspond to the two-wave approximation we
obtain the following expression:

ν�x� � ex�ν0 � νh exp�−ihx� � ν−h exp�ihx��; (9)

where

νg �
1
d

Z
d

0

1
ε�x�

∂ε�x�
∂x

exp�igx�dx; g � 0; h;−h: (10)

It is clear from Eq. (10) that ν0 � 0 for g � 0. In the case g �
�h the values of νg in Eq. (10) can be calculated in the first
order on η:

νh � −ihχh∕χ0; ν−h � ihχ−h∕χ0:

Thus, a system of vector equations for the magnetic field
spectral amplitudes H0;h�K;Ω� (7) can be obtained by substi-
tuting Eqs. (6), (7), (8), and (9) into the wave equation
[Eq. (5)]:

βH0 − χ−hHh − iν−hex × qh ×Hh∕k2 � 0;

χhH0 − �β − α�Hh � iνhex × q0 ×H0∕k2 � 0; (11)

where the following designations are introduced:

β � �q2z − k2γ2�∕k2; γ � �k2χ0 − q20x�1∕2∕k;
α � h�2q0x − h�∕k2; k � ω∕c:

Here the quantity α defines the degree of detuning from the
exact Bragg condition α � 0.

The system of vector equations [Eq. (11)] is obtained for
an arbitrary polarization of the incident light. In what follows
two special cases of linear polarization are considered:
s-polarization, when the electric field vector Ein of an incident
pulse is transverse to the plane of incidence (TE wave), and
p-polarization when the magnetic field vectorHin is transverse
to the plane of incidence (TM wave).

A. P-Polarized Field
The magnetic field for the p-polarized radiation is Hg � eyHg,
i.e., all the vectors in Eqs. (11) are parallel to the y axis, so the
Eqs. (11) take the form

βH0 − C−hχ−hHh � 0; ChχhH0 − �β − α�Hh � 0; (12)

where Ch � 1 − iνhq0x∕k2χh, C−h � 1 − iν−h�q0x − h�∕k2χ−h.
A quadratic equation for the variable β is derived from the
condition for the nontrivial solution of the system [Eq. (12)]
for the amplitudes H0 and Hh:

β�β − α� − ChC−hχhχ−h � 0;

which in turn gives the two values of β:

β1;2 � �1∕2��α∓ �α2 � 4ChC−hχhχ−h�1∕2�; (13)

where the coefficients Ch;−h for a multilayered structure and in
the case of η ≪ 1 are

Ch � 1 − hq0x∕k2χ0; C−h � 1 − h�h − q0x�∕k2χ0: (14)

The polarization factor C �
��������������
ChC−h

p
in Eq. (13) near the exact

Bragg condition is C ≈ cos θ0, where θ0 is the angle between
the vectors q0 and qh inside the PC. For an s-polarized field the
polarization factor is C � 1 [see Eq. (24)].

When considering the waves propagating into the semi-
infinite PC and taking into account Eq. (13), the following final
expression for the z projections of the wave vectors in a PC
can be obtained:

qzj � k�γ2 � βj�1∕2; j � 1; 2: (15)
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This is the dispersion equation for the electromagnetic waves
in a 1D PC.

It follows from Eq. (15) that four waves inside a PC struc-
ture exist that correspond to each of the incident plane waves
of the input pulse [Eq. (3)]: the two transmitted waves with the
wave vectors q0j � q0xex � qzjez and amplitudes H0j�K;Ω�
and two diffracted waves with the wave vectors qhj � �q0x −
h�ex � qzjez and the amplitudes Hhj�K;Ω�. These waves when
acting in pairs form the two eigenmodes of the field inside a
PC: the Borrmann (j � 1) and the anti-Borrmann (j � 2)
modes, which are spatially localized in the layers with low
and high refractive indexes, respectively [16,17]. The relation
between the field amplitudes Hhj and H0j stems from the first
equation in Eq. (12):

Hhj � RjH0j ; (16)

where Rj � βj∕C−hχ−h.
Let us now obtain the spectral amplitudes of the electric

field components. The relation between the electric induction
and field vectors in the two-wave approximation is defined by
Dg �

P
g0�0;hEg0χg−g0 , thus,

E0j �
D0j − Dhjχ−h∕χ0

χ0 − χ2∕χ0
;

Ehj �
Dhj − D0jχh∕χ0
χ0 − χ2∕χ0

: (17)

It stems from Eq. (17) that the vectors Egj and Dgj are non-
collinear, while the angle φ between them near the Bragg con-
dition is small, as sin φ ≈ η sin 2θB ≪ 1 if η ≪ 1. The directions
of the electric induction vectors Dgj � dgjDgj are specified
by the unit vectors dgj � �qzj∕qgj�ex − ��q0x − g�∕qgj �ez, where
qgj � ��q0x − g�2 � q2zj �1∕2, and their amplitudes in accordance
with the Maxwell equation ∇ ×H � c−1∂D∕∂t are connected
with the amplitudes of magnetic field Hgj as

Dgj � qgjHgj∕k: (18)

The following expressions for the electric field amplitudes
are obtained by substituting Eq. (18) into Eq. (17) and when
considering the terms of the first order in η:

E0j �
q0j
kχ0

�
1 −

Rjχ−h
χ0

q20j − q0xh

q20j

�
H0j ;

Ehj �
qhj
kχ0

�
1 −

χh
Rjχ0

q20j − q0xh

q2hj

�
Hhj: (19)

The Fourier amplitudes of the fields H0j can be determined
from the boundary conditions for the tangential components
of the magnetic Hy and the electric fields Ex at z � 0 taking
into account Eqs. (17) and (18):

H in �Hr � H01 �H02; kz�H in −Hr� � f 1H01 � f 2H02;

R1H01 � R2H02 � 0; (20)

where Hr is the amplitude of the specularly reflected wave,
f j � �qzj∕χ0��1 − Rjχ−h∕χ0�, the amplitudes of the electric
and magnetic components of the input field are equal to each

other, H in�K;Ω� � Ein�K;Ω�. The solution of the system
[Eq. (20)] is given by:

H0j � B0jH in; (21)

where B01 � −�1� Rr�R2∕R12, B02 � �1� Rr�R1∕R12, and
R12 � R1 − R2; Rr � Hr∕H in � �kz − f r�∕�kz � f r� is the
Fresnel reflection coefficient modified by the diffraction in
the layered structure, f r � �f 2R1 − f 1R2�∕R12.

As a result, the following expression for the p-polarized
magnetic fields of the transmitted and diffracted waves
[Eq. (6)] in a 1D PC is found:

Hg�x; z; t� � ey

Z
∞

−∞

Z
∞

−∞
Bg�K;Ω; z�H in�K;Ω�

× exp�iKx − iΩt�dKdΩ

× exp�i�k0x − g�x − iω0t�; (22)

where

Bg�K;Ω; z� �
X
j�1;2

Bgj exp�iqzjz�;

Bhj � Rj B0j , and B0 and Bh are the transmission and reflec-
tion amplitude coefficients of the plane waves in a PC layer of
the thickness z, respectively.

B. S-Polarized Field
Let us consider now the diffraction of the s-polarized incident
optical pulsed radiation, as the electric field vectors are par-
allel to the y axis, Eg � eyEg, so the x projections of the vector
equations [Eqs. (11)] take the form:

βH0 − χ−h�q0∕qh�Hh � 0; χh�qh∕q0�H0 − �β − α�Hh � 0:

Taking into account the relation between the amplitudes of
the fields Hg � qgEg∕k, the equations for the electric field
amplitudes can be obtained:

βE0 − χ−hEh � 0; χhE0 − �β − α�Eh � 0: (23)

It is easy to show that, much as in the case of p-polarization of
the field, four waves occur in a PC for each plane wave com-
ponent of the incident pulse field [16,17]. The expressions for
the diffraction corrections β�s�j in Eqs. (23) and the wave vec-
tor projections q�s�zj can also be obtained from Eqs. (13) and
(15) using the substitution Ch � C−h � 1:

β�s�1;2 � �1∕2��α∓ �α2 � 4χhχ−h�1∕2�;
q�s�zj � k�γ2 � β�s�j �1∕2; j � 1; 2: (24)

Here the superscript “s” denotes the s-polarization of the in-
cident field. An important point here is that the values β�s�j and
q�s�zj [Eq. (24)] for the s-polarized waves differ from the analo-
gous quantities obtained above for the p-polarized field
[Eqs. (13) and (15)].

The Fourier amplitudes E�s�
gj are determined from the boun-

dary conditions for the electric and magnetic components of
the optical fields at z � 0 and for the case of s-polarization of
the incident field:
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Ein � Er � E�s�
01 � E�s�

02 ; kz�Ein − Er� � q�s�z1E
�s�
01 � q�s�z2E

�s�
02 ;

R�s�
1 E�s�

01 � R�s�
2 E�s�

02 � 0: (25)

The solutions of Eqs. (25) are given by

E�s�
0j � B�s�

0j Ein; (26)

where B�s�
01 � −�1� R�s�

r �R�s�
2 ∕R�s�

12 , B�s�
02 � �1� R�s�

r �R�s�
1 ∕R�s�

12 .
The expression [Eq. (26)] with relations E�s�

hj � B�s�
hj Ein defines

the fields inside a 1D PC. Here the following coefficients are
introduced: B�s�

hj � R�s�
j B�s�

0j , R
�s�
12 � R�s�

1 − R�s�
2 , R�s�

r � Er∕Ein �
�kz − f �s�r �∕�kz � f �s�r �, and f �s�r � �q�s�z2R

�s�
1 − q�s�z1R

�s�
2 �∕R�s�

12 , simi-
larly to Eq. (21).

Finally, the expression for the s-polarized fields of the trans-
mitted and diffracted waves [Eq. (6)] propagating inside a PC
takes the form

E�s�
g �x; z; t� � ey

Z
∞

−∞

Z
∞

−∞
B�s�
g �K;Ω; z�Ein�K;Ω�

× exp�iKx − iΩt�dKdΩ

× exp�i�k0x − g�x − iω0t�; (27)

where

B�s�
g �K;Ω; z� �

X
j�1;2

B�s�
gj exp�iq�s�zj z�:

Here B�s�
0 and B�s�

h are the transmission and reflection ampli-
tude coefficients of the plane waves that propagate in a PC
layer of the thickness z.

The total field [Eq. (6)] can also be represented as the sum
of the Borrmann (j � 1) and anti-Borrmann (j � 2) field
modes, the corresponding expression for the case of
s-polarized incident radiation looks like

E�s��x; z; t� � �E�s�
1 �x; z; t� � E�s�

2 �x; z; t�� exp�ik0x − iω0t�;
(28)

where

E�s�
j �x; z; t� � ey

Z
∞

−∞

Z
∞

−∞
B�s�
j �K;Ω; z�Ein�K;Ω�

× exp�iKx − iΩt�dKdΩ; j � 1; 2;

B�s�
j �K;Ω; z� � exp�iq�s�zj z�

X
g�0;h

B�s�
gj exp�−igx�:

For the p-polarized field similar expressions are

H�p��x; z; t� � �H�p�
1 �x; z; t� �H�p�

2 �x; z; t�� exp�ik0x − iω0t�;

H�p�
j �x; z; t� � ey

Z
∞

−∞

Z
∞

−∞
B�p�
j �K;Ω; z�H in�K;Ω�

× exp�iKx − iΩt�dKdΩ; (29)

where

B�p�
j �K;Ω; z� � exp�iq�p�zj z�

X
g�0;h

B�p�
gj exp�−igx�:

Equations (22) and (27), or (28) and (29), describe the values
of electric and magnetic fields of transmitted and diffracted
waves in a PC layer of thickness z. As the output pulse in

a vacuum has equal amplitudes of electric and magnetic fields,
Eg�x; z; t� � Hg�x; z; t�, therefore, Eqs. (22) and (27) can be
used for calculation of electric field intensity of the pulses
after their output from a PC.

3. DIPS EFFECT FOR DIFFERENT
POLARIZED INCIDENT PULSES
Let us discuss now the dynamics of short laser pulses at the
Laue scheme of the dynamical Bragg diffraction in a 1D PC and
for an arbitrary orientation of the polarization plane of linearly
polarized incident radiation. It will be demonstrated in this sec-
tion that, under these conditions, the DIPS leads to the appear-
ance of four pulses after passing through a 1DPCwith optically
isotropic layers, while only two pulses are expected to appear
in the cases of s- or p-polarized laser beam [16–18].

It stems from Eqs. (13), (15), and (24) that dispersion laws
for the s- and p- polarized waves are different:

q�s;p�2zj � k2χ0 − q20x � hα0 ∓
�����������������������������������������������
h2α20 � C�s;p�2χhχ−hk4;

q
(30)

where α0 � q0x − h∕2. The polarization factor in Eq. (30) is a
constant for the s-polarized field, C�s� �

��������������
ChC−h

p
� 1, while

for the p-polarized field C�p� is a function of the frequency
and of the structural parameters [Eq. (14)]:

C�p�2 �ω; q0x� � 1 − h2∕χ0k2 � h2�h − q0x�q0x∕χ20k4: (31)

Figure 2 presents the dispersion curves q�s;p�zj �q0x� that are
the isofrequency sections of a PC dispersion surface. Each of
the projections of the wave vector q0x corresponds unambig-
uously to the angle of incidence shown on the upper axis of
the figure. The normal to the dispersion curves shown by the
arrows indicates the directions of the energy propagation, i.e.,
of the group velocity for the Borrmann and anti-Borrmann
modes [19]. It can be seen that the dispersion curves of the
two modes differ significantly.

The polarization dependence of the direction of the group
velocity appears under the deviation of the incident beam
propagation from the exact Bragg condition, α0 ≠ 0. The
corresponding wave amplitudes are presented in Fig. 3. It

Fig. 2. Dispersion curves q�s;p�zj (α0) for the Borrmann (red lines 1s,
1p) and anti-Borrmann (blue lines 2s, 2p) modes calculated by Eq. (30)
for the s- (dashed lines) and p-polarized (solid lines) incident radia-
tion, and for a homogeneous medium with the same value of the aver-
age refraction index na (gray line). The refractive indexes of the layers
are: n1 � 1.445 and n2 � 1.355; d � 775 nm, d1∕d � 0.5, λ0 � 800 nm,
θB � 31°.
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follows from Figs. 2 and 3 that the pulse propagation direction
shown by arrows in Fig. 2 is determined by the ratio of the
amplitudes of the transmitted and diffracted waves (Fig. 3).
For example, for α0 > 0 the amplitude of transmitted wave
of the Borrmann pulse is larger than the amplitude of the
diffracted wave jE01j > jEh1j, then the pulse propagates in a
forward direction with the wave vector q01 (Fig. 2). At the
same time, the anti-Borrmann pulse propagates in diffraction
direction along wave vector qh2 since jE02j < jEh2j.

It follows from the results shown in Fig. 2 that the effective
refractive index of the anti-Borrmann eigenmode described by

n�s;p�
gj � q�s;p�gj ∕k is larger for the s-polarized wave than for the

p-polarized one, n�s�
g2 > n�p�

g2 . Vice versa, the ratio n�p�
g1 > n�s�

g1 is

valid for the case of the Borrmann mode. The Borrmann pulse

fields E�s;p�
g1 of both polarizations are localized in low-index

layers, whereas anti-Borrmann mode E�s;p�
g2 are localized in

high-index layers, therefore, n�s;p�
g1 < n�s;p�

g2 and q�s;p�z1 < q�s;p�z2 .
The difference in the group velocities of the s- and

p-polarized pulses is caused not only by different values of the
polarization factors C�s;p� but also by a large dispersion of the
polarization factor ∂C�p�∕∂ω ≠ 0 for the p-polarized pulse.
Really, assuming the variable q0x � const in Eq. (30), the fol-
lowing expression for the z projection of the group velocity
vz � �∂qz∕∂ω�j−1q0x can be obtained:

v�s;p�zj � c
q�s;p�zj

k

"
χ0 ∓

C�s;p�χhχ−hk2�2C�s;p� � ω∂C�s;p�∕∂ω�
2

����������������������������������������������
h2α20 � C�s;p�2χhχ−hk4

q
#
−1

;

(32)

where ∂C�s�∕∂ω � 0 and the quantity �∂C�p�∕∂ω�jq0x is calcu-
lated from Eq. (31).

Figure 4 shows the dependencies of the group velocity pro-
jections on the detuning α0 (actually on q0x) described by
Eq. (32) for the Borrmann (j � 1) and anti-Borrmann (j � 2)
pulses of two polarizations. Here we assumed that a transver-
sally unconfined pulse is incident on the PC boundary at a
given angle θB, where θB is the Bragg angle for the central fre-
quency of the pulse spectrum. It can be seen that all four
group velocities v�s;p�z1;2 differ significantly from each other.
Therefore, in a general case an incident laser pulse with an

arbitrary linear polarization is divided within PC into four
pulses that propagate within the PC with different group
velocities. Outside the PC four pulses propagate also in both
transmission and diffraction directions.

A substantial role of different group velocities of eigenmo-
des in optical pulse splitting in a small array of silicon
photonic wires at discrete diffraction was noted also in [20].

Let us define the time delay between the split Borrmann
and anti-Borrmann pulses at a depth z inside the PC, or split-
ting time, as t�s;p�12 � z∕v�s;p�z1 − z∕v�s;p�z2 . Using the expressions
for the group velocities [Eq. (32)] at the exact Bragg condition
α0 � 0 and in the case of small parameter sin2 θB∕χ0 ≪ 1 the
following simple relations are obtained:

t�s�12 � �zχ∕cχ1∕20 ��1 − sin2 θB∕2χ0�;
t�p�12 � �zχ∕cχ1∕20 ��1� 3 sin2 θB∕2χ0�: (33)

The efficiency of the DIPS effect can be described by the value
pulse splitting length LDIPS. This parameter is determined by
the pulse path length at which the split pulses are spaced by
the time interval jt1 − t2j � 2τ, where τ is the pulse duration,

tj � LDIPS∕vzj . It follows from Eqs. (33), that L�s�
DIPS �

�2τcχ1∕20 ∕χ��1 − sin2 θB∕2χ0�−1 and

L�p�
DIPS∕L

�s�
DIPS � �1 − sin2 θB∕2χ0�∕�1� 3 sin2 θB∕2χ0� < 1:

Therefore, our theory predicts that a p-polarized pulse splits
faster and at smaller depth of the PC than the s-polarized one.
The splitting lengths for a porous quartz sample described

below are L�p�
DIPS � 0.22 mm and L�s�

DIPS � 0.34 mm if the pulse
duration is 30 fs.

4. EXPERIMENTAL SETUP AND SAMPLE
PREPARATION
Experiments were performed for 1D multilayered porous-
quartz-based PCs. The samples were made by temperature
annealing of porous silicon PC fabricated by the electro-
chemical etching technique described in detail elsewhere
[21]. Briefly, a p-type Si(001) wafer of the resistivity of
about 0.005 Ω · cm is used as an anode in a two-electrode
electrochemical cell with a platinum wire as a cathode, the
HF:ethanol solution being used as an electrolyte. Under such
conditions, the formation of an array of parallel pores in the

Fig. 3. Dependencies of the electric fields jE�s;p�
gj j on the detuning α0

for the Borrmann (1) and anti-Borrmann (2) modes for the s- (dashed
lines) and p-polarized (solid lines) incident radiation calculated by
Eq. (26), and Eqs. (19) and (21), correspondingly. The parameters
are the same as in Fig. 2.

Fig. 4. Dependencies of the group velocity projections v�s;p�z1;2
Eq. (32) on the detuning α0. The parameters are the same as in
Fig. 2.
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silicon wafer and oriented along the [100] direction takes
place, the diameter of pores being a linear function of the etch-
ing current density j. Spatial 1D periodicity of the structure
is formed by the periodical in time modulation of j
(j1 � 40 mA∕cm2 and j2 � 200 A∕cm2, respectively). In such
a way, a porous-silicon 1D PC was formed with the thickness
of each layer of 390 nm and with the period of 780 nm. We
made the PC composed of 375 layers so that the total PC thick-
ness of 300 μm was large enough for the performance of the
experiments in the Laue geometry.

In order to make the multilayered structure transparent at
the wavelength of 800 nm, the annealing of the porous silicon
PC in an oven in an oxygen atmosphere and at the tempera-
ture of 900°C for 1–2 h was performed. As a result, the total
oxidation of silicon in the structure and formation of a porous
quartz multilayer structure was achieved. Complementary
measurements performed for the s-polarized light have shown
that the refractive indices of the layers of high and low poros-
ity decreased as compared with porous silicon ones down to
n1 � 1.45� 0.02 and n2 � 1.35� 0.02, while prior to the
annealing these values were n1 � 1.80� 0.05 and n2 �
2.20� 0.05. The Bragg diffraction condition was satisfied
for the 31° angle of incidence of radiation with a wavelength
of 800 nm.

As the porous silica is a birefringent material [22], the re-
fractive indices for the ordinary (“o”) and extraordinary (“e”)
waves were measured in order to perform a full optical char-
acterization of the structure. The measurements were per-
formed for thick porous silica layers of a few microns thick
with the same porosity as the layers in the described above
PC and on porous substrate. The following values were ob-
tained for the layers of low and high porosity: n1;o �
1.45� 0.01 and n2;o � 1.35� 0.01, n1;e � 1.43� 0.01 and
n2;e � 1.32� 0.01, so the refraction index contrasts are δo �
0.10 and δe � 0.11, respectively.

After the annealing the PC was polished mechanically so
that two different PC slabs (3.8 mm thick and 2 mm thick)
of the dimensions 0.3 mm × 3.8 mm × 5 mm and 0.3 mm ×
2 mm × 5 mm were formed; the two samples are denoted be-
low as sample I and II, respectively.

For the experimental studies of the DIPS effect, the 110 fs
and 30 fs light pulses at a wavelength of 800 nm generated by a
Ti-sapphire laser were used, the repetition rate being 80 MHz.
The maximal average power of the fundamental radiation was
100 mW. The laser beam was focused on the cut-off of the PC
into a spot of approximately 30 μm in diameter at an angle of
incidence of 31°, i.e., under the Bragg diffraction condition.
The laser beam after passing through the PC at the Laue geom-
etry was directed to an autocorrelometer and the second-
order autocorrelation function was measured, similarly to that
described in [18].

5. EXPERIMENTAL RESULTS AND
DISCUSSION
Figures 5–7 show the second-order intensity autocorrelation
functions measured for transmitted signals for the s- or
p-polarizations of the incident pulsed radiation, as well as
for a “mixed” polarization, when the polarization plane was
tilted to 28° and 64° with respect to p-polarizations; in what
follows it is denoted by the letter “m.” It can be seen that

the autocorrelation functions change dramatically as the
polarization of the pulsed laser radiation is varied.

Experimental autocorrelation functions of transmitted
pulses were fitted by the following theoretical functions:

I�s;p�AC �τ� �
Z

∞

−∞
I�s;p�0 �t�I�s;p�0 �t� τ�dt; (34)

where the field intensities

I�s�0 �t� � jE�s�
0 �t�j2; I�p�0 �t� � jH�p�

0 �t�j2; (35)

were calculated by Eqs. (27) and (22), respectively, in the
point x � 0 and z � L. The incident pulse shape was
described by a Gaussian function Ein�x; t� � Ein0 exp
�−�2x cos θ∕D�2 − �t − x sin θ∕c�2∕τ20�, where D is the input
pulse transverse size and τ0 is the pulse duration.

Figure 5 shows the results obtained for the longer sample I
and for the incident pulse duration of 110 fs. The autocorre-
lation functions measured for the s-polarized and p-polarized
fundamental beam reveal three strong peaks [Figs. 5(a) and
5(b)] that correspond to the temporal splitting of each of the
incident pulse into two ones—Borrmann and anti-Borrmann
pulses [Figs. 5(c) and 5(d)]. The time delays are t�s�12;o �
804 fs and t�p�12;e � 1255 fs. As can be seen from the Figs. 5(a)
and 5(b), the experimental autocorrelation functions are in a
good agreement with the theoretical ones calculated by
Eq. (34). The simple approximated formulas [Eq. (33)] give
also good estimation for the time delays: t�s�12;o � 826 fs
and t�p�12;e � 1170 fs.

For the calculations we have taken into account the
material birefringence of porous fused quartz [22] that con-
forms the PC structure. It is known that the porous quartz
is a negative uniaxial material with the optical axis parallel
to the pore direction. In the case of the PCs studied in our
work, the optical axis is oriented along the normal to PC

Fig. 5. Measured (blue dashed lines) and calculated by Eqs. (34) and
(35) (red solid lines) intensity autocorrelation functions IAC�τ�
of laser pulses passed through the PC in the direction of the transmit-
ted wave at (a) s-polarized incident pulse and (b) p-polarized one for
sample I (L � 3.8 mm). The time dependence of the calculated by
Eq. (35) pulse intensities I�s;p�0 �t� that provide the best correlation with
the experimental data for (c) s-polarized and (d) p-polarized incident
pulse radiation. The refractive indexes of the layers are: n1;o � 1.455,
n2;o � 1.345, n1;e � 1.440, and n2;e � 1.320; pulse duration is
τ0 � 110 fs.
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layers. For the s-polarized laser beam, the electric field vector
is perpendicular to the optical axis of the structure, so only the
ordinary wave propagates within the PC. Otherwise, the elec-
tric field vector for the p-polarized beam lies in the plane of
incidence. If this plane coincides with the principal optical
plane of the PC, we will have only the extraordinary wave in
the PC. Thus, we have to assume that the physical mecha-
nisms of the polarization pulse splitting effect cannot be attrib-
uted simply to the birefringence effects in the porous silica
PCs. The pulse splitting is a pure DIPS effect. The p-polarized
extraordinary pulse splits faster than the s-polarized ordinary
one and t�p�12;e > t�s�12;o as the DIPS theory predicts, Eq. (33).

The experimental results of the autocorrelation function
measured for the sample I in the case of the mixed plane
polarization of the input and output radiation with different
angles of polarization ϕ � 64° and 28°are shown in Figs. 6(a)
and 6(b). The angle ϕ � 0° would correspond to pure
p-polarized pulse. The approximation of these dependencies
requires the existence of three pulses in the outgoing beam;
the corresponding spatial profile of the intensity of the out-
going pulses is shown in Figs. 6(c) and 6(d).

The temporal profile of the intensity of the outgoing radi-
ation in the case of m-input, m-output combination of polar-
izations becomes evident if we take into account that a mixed
polarized field is a superposition of two orthogonally polar-
ized waves and contains some parts of both p- and s-polarized
fields, so the intensity is

I�m�
0 �t;ϕ� � I�p�0 �t�cos2�ϕ� � I�s�0 �t�sin2�ϕ�: (36)

In a definite sense the experimental situation is intermedi-
ate between the two described previously, s-input, s-output
and p-input, p-output. The specific splitting times being the
same as estimated above (Fig. 5). As it follows Eq. (32)
and Fig. 4 for the group velocities of the split pulses, in the
general case of arbitrary pulse polarization four pulses in PC
with different group velocities exist. However, the calculation

of the velocities by Eqs. (32) under the conditions of our ex-
perimental sample parameters shows that the two velocities
for anti-Borrmann pulses have the same values v�s�z2;o � v�p�z2;e,
and so we have only three pulses at the output and not four.
The left peaks in Figs. 6(c) and 6(d) correspond to fast
Borrmann p-polarized pulses, the middle peaks are Borrmann
s-polarized pulses, and the right peaks are p- and s-polarized
slow anti-Borrmann pulses propagating with identical veloc-
ities. It is worth noting that the amplitudes of the three peaks
are comparable. Thus, the observed effect of the polarization-
sensitive temporal splitting of the femtosecond laser pulses
allows for control over the number of outgoing from the
PC pulses, as well as over their intensity and time delay.

Figure 7 shows the results obtained for the shorter sample
II and for the incident pulse duration of 30 fs, which are in a
qualitative agreement with those obtained for the sample I in
the case of s-polarization. Three peaks in the autocorrelation
function were observed [Fig. 7(a)], which correspond to the
temporal splitting of each pulse into two ones [Fig. 7(c)] with
splitting time t�s�12;o � 350 fs and is in a good agreement with
theoretical results.

The autocorrelation function for the p-polarized pulse
shown in Fig. 7(b) is much more complicated and reveals a
fine structure—three strong peaks as well as four small ones.
This picture corresponds evidently to the case when two pairs
of pulses exist after passing through the PC structure, the
splitting time in pairs of pulses being different [Fig. 7(d)].
The presence of the two strong pulses is in agreement with
our previous work [18]. The observation of two weak pulses
has not been done previously. In this work we register them
due to an increased temporal resolution of the detection sys-
tem, as 30 fs laser pulses are used instead of 110 fs ones. In the
case of p-polarization, two characteristic values of the split-
ting time exist, which match with the existence of two pairs
of split femtosecond pulses, which in turn correspond to the
strong and weak peaks in the autocorrelation function. The

Fig. 6. (a), (b) Experimental (dashed lines) and calculated by
Eq. (34) for I�m�

0 , Eq. (36) (solid lines) autocorrelation functions
I�m�
AC �τ� of the laser pulses passed through the PC in the direction
of the transmitted wave for the “mixed” polarizations of the incident
and outgoing pulses for sample I. The polarization angles are
(a) ϕ � 64° and (b) 28°. (c), (d) The intensity of the pulses calculated
by Eqs. (35) and (36). Parameters are the same as in Fig. 5.

Fig. 7. Experimentally measured (blue dashed lines) and calculated
by Eqs. (34) and (35) (red solid lines) intensity autocorrelation func-
tions IAC�τ� of laser pulses passed through the PC in the direction
of the transmitted wave for (a) s-polarized incident pulse and
(b) for the p-polarized pulses for the sample II with thickness
L � 2 mm. The intensity of the pulses I�s;p�0 �t� calculated by Eq. (35)
(c) for s-polarized incident pulse and (d) for p-polarized one. The PC
parameters used in calculations are: for ordinary wave n1;o � 1.445
and n2;o � 1.355, for extraordinary n1;e � 1.433 and n2;e � 1.327;
d � 775 nm, d1∕d � 0.5, λ0 � 800 nm, θ � θB � 31°, τ0 � 30 fs,
D � 30 μm.
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time shift between the light pulses that correspond to strong
peaks in Fig. 7(b) is t�p�12;e � 570 fs, while for the weak peaks it
is found to be 480 fs. Seemingly, the appearance of weak
peaks in Fig. 7(b) is explained by small deviation of the plane
of incidence from the principal optical plane of birefringent
porous quartz PC in our experiment. In this case, a small
projection of the electric field on the direction that is
perpendicular to the principal optical plane exists, so the light
within a PC has both extraordinary (large) and ordinary
(small) components. Orientation of the extraordinary field
component is close to p-polarized field in PC, and so the cal-
culations using Eqs. (22) and (35) give a good coincidence
with the experiment [large peaks in Figs. 7(b) and 7(d)].
For the small peaks our theory cannot give strict description,
but it is interesting that the best correlation with the experi-
mental data is provided if one uses Eqs. (22) and (35) for a
p-polarized field with the refractive indices for the ordinary
waves [small peaks in Figs. 7(b) and 7(d)].

The physical nature of the observed effect is diffraction.
Really, this effect cannot be associated solely with the bire-
fringence of the porous silica PC. The latter one does not
result in the duplication of the number of pulses in the cases
of p-input, p-output or of s-input, s-output combinations of
polarizations. In our case we see the pulse splitting of both
p-input and s-input pulses. The diffraction nature of the ob-
served phenomenon is proved by a good agreement of the ex-
perimental data and DIPS theory. In accordance with Eq. (32)
the large dispersion of polarization factor C�ω� for p-polarized
pulse, which is explained by a lattice-induced dispersion in
PC, plays the principal role in determining pulse group veloc-
ities and, as a result, of a splitting time value.

6. CONCLUSION
In conclusion, theoretical and experimental studies of the
polarization effects in DIPS in 1D PCs at the Laue scheme
of diffraction are performed. The experiments are performed
for a multilayer fused quartz PC fabricated by the temperature
annealing of porous silicon templates. We have demonstrated
that a temporal splitting of femtosecond laser pulses is ob-
served in the chosen experimental scheme and that the split-
ting time depends dramatically on the polarization of the laser
pulses, being nearly twice as large for the p-polarization as
compared with s-one. Moreover, for a mixed polarization
the picture of the temporal splitting is more rich and demon-
strates three time-shifted pulses. Experimental results are
well described by linear DIPS theory for 1D PC. The theory
explains the significant polarization effects in DIPS by a large
lattice-induced dispersion of polarization factor. The DIPS ef-
fect can be observed also in high-quality 2D and 3D PCs under
condition of the Laue scheme of the Bragg diffraction [23].
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