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1. INTRODUCTION

The diffraction phenomena that emerge when
electromagnetic radiation in various wavelength
ranges interacts with periodic structures have a num�
ber of common patterns. For example, there exist the
regions of selective Bragg reflection or the so�called
photonic forbidden bands in the case of X�ray [1],
optical or radio wave [2] diffraction in the Bragg
geometry and the Borrmann [3, 4] and pendulum [1,
5, 6] effects in the case of dynamical Bragg diffraction
in the Laue scheme. The dynamical diffraction in the
Lauer geometry “for transmission”, when the trans�
mitted and diffracted waves propagate into the struc�
ture, was investigated previously for a weak modula�
tion δ0 = n1 – n2 of the refractive index of the medium
[7–12] mainly in the problems of X�ray propagation in
crystals (δ0 ~ 10–5) [1]. The anomalously weak absorp�
tion of X�rays in crystals or the Borrmann effect [3],
which results from the localization of different field
modes in different regions of the crystal, has long been
explained. The weakly absorbed field, i.e., the Bor�
rmann mode, is localized predominantly between the
crystal planes in the region of a low electron density,
while the strongly absorbed anti�Borrmann mode is
localized mainly on the crystal planes. If we choose a
sufficiently thin crystal in which the anti�Borrmann
mode has no time to be absorbed and, consequently,
all radiation eigenmodes in the crystal exist at each
point of the medium, then the pendulum effect or the
pendulum solution is observed [1]. In this case, as the
radiation propagates in the crystal, the energy of the
transmitted wave is transferred periodically com�
pletely into the diffracted wave and back [1, 5, 6].

The main significant differences in the X�ray and
optical diffraction effects arise when the large modula�
tion depth of the refractive index for the structure
(δ0 ~ 0.1) and the nonlinearity of the laser radiation–
photonic crystal (PC) interaction are taken into
account [13, 14]. Apart from purely nonlinear
effects—an increase in the generation efficiency of
nonlinear signals due to the field localization in the
medium at the edge of the photonic forbidden band
[15] and quasi�phase matching both in the Bragg
geometry [16] and in the Laue scheme in crystals with
random [17] and regular [18] domain structures as well
as the propagation of Bragg solitons [13, 14]—new
dynamical linear and nonlinear phenomena typical of
media with a large contrast of the refractive index
appear in PCs. Previously, the diffraction�induced
splitting of laser pulses in linear [6] and nonlinear res�
onant [4] PCs was predicted for the dynamical diffrac�
tion of radiation in the Laue scheme. In the case of lin�
ear PCs, the pulses were assumed to be in the form of
plane quasi�monochromatic wave packets with an
unbounded wave front in the cross section. Pulse split�
ting results from the localization of the Borrmann and
anti�Borrmann modes in different spatial PC regions.
This leads to different dispersion laws for the two modes
and to the propagation of two pulses, the Borrmann and
anti�Borrmann ones, with different group velocities in
the PC.

A similar effect was also predicted for the case of
discrete diffraction in a lattice of coupled waveguides,
where the initial pulse is split into eigenmode pulses
with different group velocities [19, 20]. The compres�
sion and change of the pulse profile upon diffraction in
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the Laue scheme was previously considered in optics
for media with a low contrast of the refractive index [9,
10] in the case of relatively optically thin structures,
where the Borrmann and anti�Borrmann modes do
not separate spatially and there is no diffraction�
induced pulse splitting, but only the regime of the pen�
dulum solution is realized.

In this paper, we analytically solve the boundary�
value problem of Bragg diffraction in the Laue geom�
etry for a spatially confined short laser pulse in a one�
dimensional linear PC (Fig. 1) with a relatively large
modulation of the refractive index typical of PCs
composed of semiconductor and dielectric materials,
for example, porous silicon or oxidized porous silicon
[21]. The incident pulse is represented as a two�
dimensional Fourier decomposition into plane
monochromatic waves with different frequencies and
wave vectors. Subsequently, once the Fourier ampli�
tudes of each of the plane waves inside the PC have
been determined in the two�wave approximation, we
perform a Fourier synthesis and find the field
strengths of the forward (transmitted) and diffracted
pulses at different PC points at a specific instant of
time. We show that the diffraction�induced pulse
splitting (DIPS) in a one�dimensional PC takes place
for spatially confined laser pulses with transverse sizes
greater than or of the order of 20 μm. The dynamics
and parameters of the separated pulses can be effi�
ciently controlled due to different lattice�induced
dispersions for the Borrmann and anti�Borrmann
pulse fields and due to different spatial localizations
of these pulses in the PC after the diffraction�induced
splitting of the input signal. We predict the selective
compression of a frequency�modulated pulse, i.e., the
compression of either the fast Borrmann or slow anti�
Borrmann pulses, depending on the sign of the input
signal frequency modulation. The selective pulse
focusing is also shown to be possible.

2. THE DIFFRACTION�INDUCED SPLITTING 
OF A SPATIALLY CONFINED OPTICAL PULSE

Consider a one�dimensional photonic crystal that
consists of optically isotropic, periodically alternating
layers with thicknesses d1, d2 and refractive indices n1,
n2. The layers are perpendicular to the PC surface
(Fig. 1). An arbitrary light pulse with the following
electric field is incident on the PC at an angle θ to the
normal to its surface:

(1)

where Ain is generally a slowly changing complex
amplitude, ω0 is the central frequency of the signal,
k0 =  = ω0/c = 2π/λ0, λ0 is the central wavelength,
c is the speed of light in a vacuum, k0x = k0sinθ, k0z =
k0cosθ, the x axis is directed along the PC surface, and
the z axis is directed into the crystal along the normal
to its surface. For simplicity, we consider a pulse with
an s field polarization.

Ein r t,( ) Ain r t,( ) ik0 r⋅ iω0t–( ),exp=

k0

The complex field E(r, t) in the PC obeys the wave
equation

(2)

where ε(x) = n2(x) is the complex permittivity and Δ =
∂2/∂x2 + ∂2/∂z2 is the Laplace operator. We will repre�
sent the refractive index of the medium n(x) in the PC
as a function of the x coordinate as

where

is the average refractive index, δ0 = n1 – n2 is the modu�
lation of the refractive index, ξ = d1/d, and d = d1 + d2

is the period of the structure. The function Δn(x) =
δ0(1 – ξ) in the layers with thicknesses d1 and Δn(x) =
–δ0ξ in the layers with thicknesses d2.

Let us represent the field (1) of the incident pulse
on the PC surface z = 0 as a two�dimensional Fourier
decomposition, i.e., as a set of plane monochromatic
waves with amplitudes Ein(kx, ω), frequencies ω =

ω0 + Ω, and wave vectors k, where  ≡ k = ω/c,
whose projections are defined by the relations kx =

k0x + K and kz = :

ΔE r t,( ) ε x( )

c2
��������∂
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∂t2
�����������������– 0,=
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Fig. 1. Pulse diffraction scheme in the Laue geometry in a
one�dimensional photonic crystal.
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where the spectral angular amplitudes

(3)

Consider a PC with a significant modulation of the
refractive index (δ0 ≤ 0.3), which allows us to consider
the pulse diffraction in the two�wave approximation,
when two “strong” waves exists near the Bragg condi�
tion h = 2k0sinθB in the PC—the transmitted, E0, and
diffracted, Eh, ones with wave vectors q0 and qh =
q0 + h for each spectral angular field component,
where h is the reciprocal lattice vector,  ≡ h = 2π/d,
and θB is the Bragg angle for radiation with a central
frequency ω0. A more accurate criterion of applicabil�
ity for the two�wave approximation will be formulated
below. In this case, in the range 0 ≤ z ≤ L, where L is
the PC thickness, the total field

(4)

is a coherent superposition of the incident, E0, and dif�
fracted, Eh, pulse fields. Since the tangential compo�
nents of the wave vectors q0x(K) = kx = k0x + K are con�
tinuous on the z = 0 surface, we seek the field in the PC
in the form

(5)

where g = 0, h; h is the magnitude of the reciprocal lat�
tice vector whose projections are hx = –h and hz = 0;
q0z = qhz are the z projections of the wave vectors in the
PC (see Eq. (12) below), which can be determined
from the wave equation (2).

The permittivity ε(x) in the two�wave approxima�
tion is [6]

(6)

where χ0, χh, and χ–h are the Fourier components of
the permittivity defined by the relations

Substituting Eqs. (4), (5), and (6) into the wave
equation (2) leads to the following system of dynami�
cal equations for the field amplitudes A0 and Ah in (5):

(7)

Ein kx ω,( ) Ain K Ω,( )≡

=  1

4π2
������� Ain x t,( ) iKx– iΩt+( )exp x t.dd

∞–

∞

∫
∞–

∞

∫

h

E r t,( ) E0 r t,( ) Eh r t,( )+=

Eg x z t, ,( ) Ag K Ω,( )

∞–

∞

∫
∞–

∞

∫=

× i q0x g–( )x iq0zz iωt–+[ ]dK Ω,dexp

ε x( ) χ0 χhe ihx– χ h– eihx
,+ +=

χ0 ne
2 δ0

2 ξ ξ2–( ),+=

χh
i
π
�� neδ0 δ0

21 2ξ–
2

������������+⎝ ⎠
⎛ ⎞ 1 e2iπξ–( ),=

χ h–
i
π
�� neδ0 δ0

21 2ξ–
2

������������+⎝ ⎠
⎛ ⎞ 1 e 2– iπξ–( ).–=

k2χ0 q0x
2– q0z

2–( )A0 k2χ h– Ah+ 0,=

k2χ0 q0x h–( )2– q0z
2–[ ]Ah k2χhA0+ 0.=

Let us introduce convenient designations:

(8)

(9)

where the function α(K, Ω) defines the degree of
detuning from the exact Bragg condition α = 0. Sys�
tem (7) will then be written in compact form:

(10a)

(10b)

A quadratic equation for the variable β (9) is derived
from the condition for the solution of system (10) for
the amplitudes A0 and Ah being nontrivial. Its solution
has two roots:

(11)

We will assume that only the waves propagating into
the structure exist in a semi�infinite PC. Therefore,
given (9), we will obtain the following final expression
for the sought�for z projections of the wave vectors in
the PC:

(12)

In addition, a simple relation between the field ampli�
tudes Ah and A0 follows from Eq. (10a):

It should be emphasized that, in contrast to [6], solu�
tion (12) and quantities (8) and (9) are exact without
any expansion in terms of the parameters K/k0, Ω/ω0,
and (θ – θB)/θB.

The Fourier amplitudes of the fields A0, h(K, Ω) can
be determined from the conditions for the electric and
magnetic fields being continuous on the PC entrance
surface z = 0:

(13)

where As is the amplitude of the specularly reflected
wave. Taking into account the reflection of the trans�
mitted and diffracted pulses from the lower PC surface
does not change the main features of DIPS. The solu�
tion of system (13) is

(14)

where R12 = R1 – R2, Rs = As/Ain = (kz – fs)/(kz + fs) is
the diffraction�modified Fresnel reflection coeffi�

cient, and fs = (  – )/R12.

γ0
1
k
�� k2χ0 q0x

2– , α h

k2
���� 2q0x h–( ),= =
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q0z

2 k2γ0
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������������������,=
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1
2
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As a result, we obtain the following expression for
the total field (4) in the PC:

(15)

where

(16)

B0 = T(z) and Bh = R(z) are, respectively, the ampli�
tude transmission and reflection coefficients of plane
waves in a PC layer of thickness z. The total field (15)
can also be represented as the sum of the fields of both
modes:

(17)

Thus, four waves exist for each plane�wave field

component: two with wave vectors  and  for the
transmitted and diffracted waves, the Borrmann

mode, and two with wave vectors  and , the
anti�Borrmann mode (12). The transmitted and dif�
fracted waves of each mode have pairwise identical
projections of the wave vectors onto the z axis and pair�
wise identical group velocities in the x and z directions
(see Eqs. (23) and (24) below). In addition, the projec�
tions of the wave vectors onto the x axis for the trans�
mitted and diffracted waves differ by the reciprocal lat�
tice vector, a constant. Therefore, if the Bragg condi�
tion is fulfilled exactly, then the sums of these waves
with identical indices are two standing waves in the x
direction. These modes have different phase and group
velocities in the x and z directions because of the dif�
ference between the effective refractive indices

(see Eqs. (8), (11), and (12)) due to the lattice�
induced dispersion, which, as a rule, exceeds consid�
erably the material dispersion of the PC layers.

Depending on the index j, the field of each mode is
predominantly localized in PC layers with smaller (the
Borrmann mode, j = 1) or larger (the anti�Borrmann
mode, j = 2) refractive indices nj and the correspond�

E x z t, ,( ) A0 x z t, ,( ) Ah x z t, ,( ) ihx–( )exp+[ ]=

× ik0xx iω0t–( ),exp

Ag x z t, ,( ) BgAin K Ω,( )
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∞

∫
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∞
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× iKx iΩt–( )dKdΩ,exp

Bg Ain
1– Agj iq0z

j( )z( ), gexp
j 1 2,=

∑ 0 h,,= =

E x z t, ,( ) A1 x z t, ,( ) A2 x z t, ,( )+[ ]=

× ik0xx iω0t–( ),exp

Aj x z t, ,( ) BjAin K Ω,( )

∞–

∞

∫
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∞
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× iKx iΩt–( )dKdΩ,exp

Bj Ain
1– iq0z

j( )z( ) Agj igx–( ), jexp
g 0 h,=

∑exp 1 2.,= =

q0
1( ) qh

1( )

q0
2( ) qh

2( )

nej K Ω,( ) q j( )
/k χ0 βj+= =

ing absorption coefficient μj = 2k0Imnj. Figure 2 pre�

sents the dispersion curves (q0x) (12) for the Bor�
rmann and anti�Borrmann modes, which are isofre�
quency sections of the PC dispersion surface ω(q).
Therefore, the angle of incidence shown on the upper
axis can be uniquely associated with each projection of
the wave vector. To demonstrate the influence of the
lattice�induced dispersion, the same figure presents
the dependence for a homogeneous material with the

average PC refractive index  for which the z pro�
jection of the wave vector is equal to kγ0. The arrows
indicate the directions of the normal to the dispersion
curves corresponding to the energy propagation direc�
tions for the Borrmann and anti�Borrmann modes [1].

Figure 3 shows the intensities of both modes Ij(x) =

 ( j = 1, 2) in various PC z sections measured in

units of the extinction depth Λ = λ0γ0r/2 , where

γ0r = Re . The quantity 2Λ is equal to
the period of the pendulum solution, i.e., the effect of
complete energy transfer from the transmitted wave E0

into the diffracted one Eh and back. We see from our
comparison of Figs. 3a and 3b that the anti�Borrmann
mode (curve 2) is suppressed with increasing z as a
result of its localization in layers with a larger absorp�
tion coefficient.

Let us now turn to discussing the optimal condi�
tions for DIPS or the diffraction�induced splitting of

q0z
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Fig. 2. Dispersion curves for the Borrmann (curve 1) and
anti�Borrmann (curve 2) modes as well as for a homoge�

neous medium with the average PC refractive index 

(3) as a function of the variable α0 = q0x – h/2 at a constant
frequency. The PC and radiation parameters are n1 = 1.7
and δ0 = 0.2; the period is d = 1 μm, ξ = 0.5, and the wave�
length is λ0 = 1 μm. The arrows indicate the directions of
the group velocities for the Borrmann and anti�Borrmann
modes (the normals to the curves) at angular deviations of
0° and 11° from the exact Bragg condition.

χ0
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an incident spatially confined pulse. It follows from
Eqs. (11) and (14)–(16) that the region of efficient
Bragg diffraction for a pulse in a PC is defined by the
relation

The latter imposes a constraint on the frequency (ΔΩ0)
and angular (ΔK0) widths of the spectrum Ain(K, Ω) for
the incident pulse and on the detuning of the angle of
incidence θ from the Bragg angle θB.

For a narrow spatial frequency spectrum of the
incident pulse, ΔΩ0 � ω0, ΔK0 � k0x near the Bragg
condition Δθ � θB, where Δθ = θ – θB, the detuning
(8) can be expanded in terms of small parameters:

In the case of a long�duration pulse or, for example, a
beam, i.e., a wave packet with a narrow frequency
spectrum (ΔΩ0 � ω0), the angular width of the Bragg
reflection peak is then

If the incident pulse is short in duration but wide
enough for the width of the spatial spectrum to be
neglected (ΔK0/k0 � ΔΩ0/ω0), only the waves with K =
(Ω/c)sinθ will be present in its spectrum (3). There�

α K Ω,( ) αB≤ 2 χh .=

α 2 Δθ K
k0 θBcos
����������������+⎝ ⎠

⎛ ⎞ 2θB.sin=

ΔKB
k0 χh

2 θBsin
�������������.=

fore, the frequency width of the Bragg reflection peak
is defined by the expression

Let a pulse with a Gaussian amplitude distribution

(18)

where r0 is the transverse pulse size and τ is the pulse
duration, be incident on a PC. Its spectral and angular
widths are ΔΩ0 ≈ 2/τ and ΔK0 ≈ 2cosθ/r0, respectively.
Hence it follows that the condition  ≤ αB is met for
a pulse with a duration τ > 4sin2θB/ω0  and a width

r0 > λ0sin2θB/π . If, for example, λ0 ≈ 1 μm,  ≈
0.2, and θB ≈ 30°, then τ > 3 fs and r0 > 2 μm. In a PC
with a larger contrast of the refractive index, the widths
of the Bragg zones are so large that the first zone can
partially overlap with higher�order zones.

To test the assumption made here about the appli�
cability of the two�wave approximation, let us com�
pare the spectral sizes of the Bragg zone (ΔKB) with
half the distance between the neighboring zones (h/2).
At λ0 ≈ 1 μm,  ≈ 0.2, and θB ≈ 30°, we will obtain

2ΔKB/h = /2sin2θB ≈ 0.4. Thus, the two�wave
approximation is valid for the chosen parameters.

As a result of the difference between the z projec�

tions of the group velocities  (see Eq. (23) below)
for the Borrmann and anti�Borrmann modes, the
Borrmann and anti�Borrmann pulses will pass
through some section of the crystal at a depth z = z0

with an appreciable time delay between them of the

order of 2τ = , where tj = z0/ . Hence, taking

into account the expansions of  (12) and  (23)

in terms of the small parameter /χ0, it is easy to
find that when the Bragg condition α = 0 is met, the
quantity

This distance decreases with decreasing pulse duration
and with increasing modulation depth of the refractive
index. If, for example, λ0 = 1 μm, n1 = 1.7, δ0 = 0.2,
ξ = 0.5, and θB = 30°, then  ≈ 0.2 and the splitting
of an incident pulse with τ = 0.1 ps into two pulses in
the PC will occur at a comparatively small depth z0 ≈
0.5 mm.

Consider the propagation dynamics of a spatially
confined pulse in a PC. Let us introduce the total
intensity of the field (15)

(19)
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Fig. 3. Borrmann (curves 1) and anti�Borrmann (curves 2)
modes at depths z = 10Λ (a) and z = 300Λ (b) as well as the
profile of the real part of the refractive index (curves 3).
The PC parameters are d = 1 μm, ξ = 0.4, n1 = 1.6 + i ×

5 × 10–5, n2 = 1.5, the extinction depth is Λ = 7.81 μm,
λ0 = 1 μm, θ = θB = 30°.
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and the intensities of the transmitted (g = 0) and dif�
fracted (g = h) pulses whose amplitudes are defined by
Eqs. (16),

(20)

As we see from (15), in contrast to the total field inten�
sity (19), the sum of the intensities for the transmitted
and diffracted pulses, I0(x, z, t) + Ih(x, z, t), does not
describe the small�scale intensity oscillations in the
standing wave that emerges when the transmitted and
diffracted waves interfere.

Figure 4 presents the spatial distribution of the total
pulse field intensity I(x, z, t = const) (19) at various
instants of time. It allows the pulse transformation
dynamics at various diffraction stages to be observed
on the same graph. We see that the incident pulses is
refracted and partially reflected at the PC boundary
(z = 0). Inside the PC, the pulse propagates as a single
refracted pulse to some depth z < z0. In this case, all
four waves exist at each PC point and the pendulum
effect is observed (Fig. 5a), i.e., the field intensities for
the transmitted (I0) and diffracted (Ih) waves (20) are
periodically distributed with a period of 2Λ along the z
axis. At z > z0, the pulse separates into two pulses each
of which contains only one mode, the Borrmann or

Ig x z t, ,( ) Ag x z t, ,( ) 2
.=

anti�Borrmann one, localized mainly in the region
with a small or large refractive index, respectively
(Fig. 5b). The separation between the pulses increases
linearly with depth z. If the Bragg condition for the
central wave packet frequency is fulfilled exactly, then
the pulses propagate perpendicularly to the PC surface
along the layers in a channel with a width of 2r0/cosθB.
This is explained by the restoring action of diffraction
reflection in the periodic structure on radiation. It is
worth noting that the period of the intensity oscilla�
tions for the separated pulses along the x axis clearly
seen in Fig. 4 differs from the true one (see Fig. 5b),
because the spatial resolution of the graph presented in
Fig. 4 is finite.

Each of the pulses that resulted from DIPS consists
of the coincident (in space and time) transmitted and
diffracted pulses coupled between themselves by
dynamical diffraction. They separate only on the PC
exit surface and, subsequently, each of them propa�
gates in its own direction: the two transmitted pulses
propagate along k0 and the two diffracted pulses prop�
agate along kh = k0 + h (Fig. 4, z > 4 mm). The reflec�
tion from the lower boundary is disregarded; we
assume that it is weak and does not change the charac�
teristic shape of the field distribution at the exit from
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the PC. The intensity of the incident pulse with ampli�
tude Ain and the intensity of the specularly reflected
(from the upper boundary) pulse with amplitude As are
presented in the upper region of the free space (Fig. 4,
z < 0), outside the structure. These distributions were
obtained when the wave equation was solved in free
space [22] with boundary conditions corresponding to
the specified incident pulse field (18) on the upper PC
surface (z = 0). The field distribution for the four
pulses emerged in free space as a result of DIPS is pre�
sented in the lower part of the graph. The field distri�
bution for the transmitted and diffracted field compo�
nents (15) and (16) at z = 4 mm was used as the bound�
ary condition.

3. SELECTIVE COMPRESSION
AND FOCUSING OF THE BORRMANN

AND ANTI�BORRMANN PULSES

The different dispersion laws for the Borrmann and
anti�Borrmann pulse fields attributable to the lattice�
induced dispersion in a linear PC upon Bragg diffrac�
tion in the Laue geometry (see Fig. 2) allow compres�
sion of one of the pulses and stretching of the other to
be simultaneously executed in the case of a phase
modulation of the incident signal. Let us show this
using the propagation of spatially confined pulses with
a quadratic phase modulation as an example.

The quadratic phase modulation in the direction of
pulse propagation is specified by a linear frequency
modulation, i.e., chirp, while the phase modulation in
the transverse direction corresponds to wave packet
focusing or defocusing. The complex envelope (1) of
such a pulse on the PC surface can generally be repre�
sented as a generalization of Eq. (18):

where σ is the parameter that describes the phase
change due to wave front bending (focusing or defo�
cusing), the parameter β describes the linear change in
pulse frequency, and A0 is the amplitude of the incident
field. The spectrum of such a wave packet calculated
from Eq. (3) is

where

are the characteristic widths of the spectrum for the
frequency�modulated pulse and the x projection of the
wave vector (due to the change in the angle of inci�
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dence of the pulse),  is its amplitude. The width of
the spatial frequency spectrum for modulated pulses is
larger than that for nonmodulated ones, i.e., spectrally
confined pulses with the same duration and transverse
size. The parameters σ and β define the spectrum
broadening upon modulation. Below, we will show
that the noticeable changes in pulse duration and
transverse size associated with the phase modulation
of the incident pulse emerge when the pulse spectrum
broadens significantly, i.e., at  � 1.

For the convenience of calculating the group
velocity projections, let us write the dispersion rela�
tion (12) as

(21)

where

is the square of the magnitude of the wave vector for
the forward wave in the PC and α0 = q0x – h/2 defines
the deviation of the x projection q0x from the exact
Bragg condition q0x = h/2. The dispersion relation for
the diffracted waves can be obtained by substituting
q0x = qhx + h and q0z = qhz into (21). Equation (21)
relates the variables q0x, q0z, and ω, which were previ�
ously independent in (5). The explicit dependence of
q0 on q0x is explained by the lattice�induced dispersion
in the PC. To find the group velocity projections, let us
write the differential of Eq. (21) as

(22)

Provided that the variable q0x = const, the z projection

of the group velocity  =  is then

(23)

where  can be determined from (21) and W =

; as above, the plus and minus signs
correspond to the Borrmann (j = 1) and anti�Bor�
rmann (j = 2) modes, respectively. Assuming that the
variable q0z = const in (22), we will obtain the follow�
ing expression for the x projection of the group velocity

 = :

(24)

The velocity  is zero when the Bragg condition
α0 = 0 is fulfilled exactly and changes its sign when the
sign of the detuning α0 changes. The group velocities
for the diffracted waves (qhx) can also be calculated
from Eqs. (23) and (24), in which the substitutions

Ã0

σ β,

q0z
j( )2 q0x

2+ q0
j( )2 ω q0x,( ),=

q0
j( )2 ω q0x,( ) χ0k2 hα0 h2α0

2 χhχ h– k4++−+=

2q0z
j( )dq0z

j( ) 2q0xdq0x+
∂q0

j( )2

∂ω
����������dω

∂q0
j( )2

∂q0x

����������dq0x.+=

vz
j( ) ∂ω/∂q0z

j( )( ) q0x

vz
j( ) cq0z

j( )

k χ0 χhχ h– k2
/W+−( )

��������������������������������������,=

q0z
j( )

h2α0
2 χhχ h– k4+

vx
j( ) ∂ω/∂q0x( ) q0z

vx
j( ) cα0 1 h2

/2W±( )

k χ0 χhχ h– k2
/W+−( )

��������������������������������������.=

vx
j( )



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 115  No. 1  2012

DYNAMICAL BRAGG DIFFRACTION OF OPTICAL PULSES IN PHOTONIC CRYSTALS 63

q0z = qhz and α0 = αh, where αh = qhx + h/2 with qhx <
0, should be made. Thus, the group velocities of the
forward (q0x, q0z) and diffracted (qhx, qhz) waves for
each mode, the Borrmann or anti�Borrmann one,
coincide; therefore, we can talk about the group veloc�
ities of the Borrmann or anti�Borrmann pulse. As fol�
lows from (24), at α0 < 0, the anti�Borrmann pulse

propagates in the forward direction (  > 0), while
the Borrmann one propagates in the direction of dif�

fraction�induced reflection (  < 0). In contrast, at
α0 > 0, the Borrmann pulse propagates in the forward

direction (  > 0), while the anti�Borrmann propa�

gates in the opposite direction (  < 0). This can also
be clearly seen from the directions of the group veloc�
ities in Fig. 2.

In Fig. 6, the group velocity projections (23) and
(24) are plotted against the detuning α0, i.e., actually
on q0x, provided that a transversally unconfined pulse
is incident on the PC boundary at a given angle θB,
where θB is the Bragg angle for the central frequency of
the pulse spectrum. In this case, it follows from the
boundary conditions that the waves with frequencies ω
and wave vector projections q0x = kx = (ω/c)sinθB
propagate in the PC. Therefore, when constructing
the plots from Eqs. (23) and (24), we used the depen�
dences k = ω/c and q0x = (ω/c)sinθB. It follows from
the latter expression that a linear frequency modula�
tion of the incident pulse leads to a linear modulation
of the x projection q0x of the wave vector in the PC.

We see from the plots in Fig. 6 that the lattice�

induced dispersion /  of the group veloci�
ties has the same sign for the Borrmann and anti�Bor�

rmann modes for the z velocity projections 

vx
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vx
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∂vz x,
1 2,( ) ∂q0x

vz
1 2,( )

(Fig. 6a) and opposite signs for the x projections 
(Fig. 6b) in a fairly wide range of α0 values near the
Bragg condition α0 = 0. The sign of the dispersion is

retained when the sign of the velocity  changes.
This means that if a chirped pulse is incident on the
PC, then, for example, the Borrmann pulse will com�
press along the x axis, while the anti�Borrmann one

will spread due to different wave velocities  at the
leading and trailing pulse edges. The Borrmann and
anti�Borrmann pulses will simultaneously either
weakly compress or spread along the z axis, depending
on the sign of the chirp, due to a weak dispersion of the
group velocities of the same sign.

Figure 7 presents the spatial distribution of the sum
of the magnitudes of the field amplitudes  + 
inside the PC calculated from Eqs. (16) for the diffrac�
tion of spatially confined pulses with chirps of oppo�
site signs at opposite signs of the detuning α0. For neg�
ative chirp (β < 0), the frequency of the leading edge of
the incident pulse is lower than that of the trailing
edge; q0x also changes. Therefore, if the central pulse
frequency is higher than the Bragg one, i.e., α0 > 0

(Fig. 7a), then, as we see from Fig. 6b,  > 0 for the
Borrmann pulse and the velocity dispersion is positive.

Therefore, the velocity  of the trailing edge is
higher than that of the leading edge and the Borrmann
pulse will compress while propagating along the x axis.
At the same time, the anti�Borrmann pulse, with a low

velocity  < 0, will be essentially unchanged,
because it will simultaneously weakly compress along
the z axis (Fig. 6a) and weakly spread along the x axis.
Precisely such dynamics is observed in Fig. 7a.
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Bragg detuning α0 = q0x – h/2 = (Ω/c)sinθB. The PC and radiation parameters are the same as those in Fig. 2.



64

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 115  No. 1  2012

SKORYNIN et al.

As the central pulse frequency decreases, the sign
of α0 changes (α0 < 0), the velocity of the Borrmann

pulse becomes negative (  < 0), the dispersion
increases (Fig. 6b), and it rapidly compresses
(Fig. 7b). At the same time, the velocity of the anti�

Borrmann pulse  > 0, the velocity dispersion is
negative, and, therefore, it spreads (Fig. 7b). The exact
fulfillment of the Bragg condition for the incident
pulses, i.e., α0 = 0, causes Bormann pulse compres�
sion and anti�Borrmann pulse spreading at β < 0
(Fig. 7c). This is also in good agreement with the plots
in Fig. 6b. The wave velocities at the central pulse fre�

quency are zero in this case,  = 0, but the veloc�
ities of the leading and trailing edges have opposite
signs. For example, the velocities of the leading and
trailing edge for the Borrmann pulse are, respectively,

 < 0 (because α0 < 0) and  > 0 (because α0 > 0).
Thus, at β < 0, the Borrmann pulse compresses at any
detuning α0. The change of sign of the chirp β > 0 at
α0 = 0 leads to anti�Borrmann pulse compression and
Borrmann pulse broadening. Finally, if α0 < 0 and β >
0, then, as follows from the plots in Fig. 6b, the anti�

vx
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vx
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vx
1 2,( )

vx
1( )

vx
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Borrmann pulse with  > 0 compresses, while the

Borrmann one with  < 0 spreads (Fig. 7d). The
anti�Borrmann pulse compresses at β > 0 in a wide
range of α0 values.

Thus, the selective compression of pulses, i.e., the
compression of either fast pulses localized in PC layers
with a smaller refractive index (Borrmann ones) or
slow pulses propagating in layers with a larger refrac�
tive index (anti�Borrmann ones), can be executed by
changing the sign of the chirp. The Borrmann and
anti�Borrmann pulses can be interchanged in a spe�
cific direction of propagation by changing the sign of
the detuning α0 from the exact Bragg condition
through a change in the central pulse frequency or the
angle of incidence.

The pulse propagation directions in PCs under the
DIPS effect are determined by the detuning of the
center of the incident wave packet spectrum from the
exact Bragg condition α0 = 0. In Figs. 7a, 7b, and 7d,
the separated pulses propagate not parallel but at some
angle to the PC layers, because the angle of incidence
differs from the exact Bragg angle. In this case, pulses
of fairly small transverse sizes emerge from the PC at
different points of the PC exit surface, i.e., not only
the temporal splitting or delay of the pulses but also
their spatial shift inside the PC is realized. If the DIPS
conditions break down in this case, then the pulses will
leave the PC at different points but at the same instant
of time.

The maximum pulse compression is achieved at a
detuning from the Bragg condition when the entire
incident radiation spectrum lies in the region of strong
and approximately constant group velocity dispersion.
Both a decrease in pulse duration and an increase in
peak intensity (in our case, by a factor of 19) compared
to an unchirped pulse are observed in this case (Fig. 8).
Using pulses with considerably higher values of the
parameter β allows a compression up to a factor of 30
to be achieved. An even larger compression can be
realized only for a more complex (than the linear one)
frequency modulation of the incident pulse corre�
sponding to the compensation of the influence of
higher�order dispersion.

When the pulse is incident at the exact Bragg angle,
the pulse energy is evenly divided between the two
modes. The amplitudes Agj of each mode in Eqs. (16)
and (17) for the amplitude transmission and reflection
coefficients depend on the detuning α0. As it
increases, the intensity of one of the modes increases,
while the intensity of the other mode decreases. This
effect allows the detuning to be chosen in such a way
that there is up to 80% of the entire field energy inside
the PC in the compressing pulse. Such a case is pre�
sented in Fig. 8.

The compression (focusing) of pulses with a qua�
dratic phase modulation (σ ≠ 0) in the transverse
direction with respect to the propagation direction is,
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Eqs. (16) for the diffraction of chirped pulses. The param�
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on the whole, described just as in the case of a chirped
pulse due to the spatiotemporal analogy [23]. In the
approximations of a Gaussian wave packet profile,
Fraunhofer diffraction, and a long pulse duration, we
can obtain the following expression that describes the
change in transverse pulse size:

where Lη = /2  is the dispersion�induced broad�

ening length and η = ∂2q0z/∂  is the parameter that
characterizes the dispersion�induced wave packet
spreading. The expression for η can be derived from
the dispersion relation (21).

The quantities η(1, 2) are plotted against the detun�
ing in Fig. 9. It is important to note that η(2) is almost
everywhere greater than zero for the anti�Borrmann
mode and η(1) < 0 for the Borrmann one. The magni�
tudes of η(1, 2) have a maximum under the exact Bragg
condition:

The magnitudes of η(1, 2) decrease as the detuning
increases.

Two conditions should be met for the pulse com�
pression in the transverse direction by focusing: the
wave packet should have an initial modulation and the
sign of σ should coincide with that of η. The violation
of the first condition will lead to a monotonic increase
in transverse pulse sizes upon diffraction, just as in the
case of ordinary diffraction�induced spreading in a
vacuum. The violation of the second condition will
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lead to a faster (relative to the propagation in a vac�
uum) broadening. Since η(1, 2) have opposite signs, the
sizes of not only the focused pulses but also the defo�
cused ones, which can undergo only spatial spreading
when propagating in a homogeneous medium, can
decrease inside the PC.

Figure 10 presents the spatial distribution of the
sum of the magnitudes of the field amplitudes (16)
inside the PC for the diffraction of spatially modulated
pulses. We see that when a defocused pulse is incident
on the PC (Fig. 10a), the trailing anti�Borrmann pulse
is focused (undergoes spatial compression) when
propagating in the PC, while the leading Borrmann
pulse is defocused, i.e., spreads. In contrast, in the
case of a focused incident pulse, the Borrmann pulse
compresses (Fig. 10b). Similar results are also
obtained for the focusing of light beams upon diffrac�
tion in the Laue geometry in PCs, because the beams
are a special case of spatially modulated wave packets
whose longitudinal sizes are much greater than the
transverse ones, i.e., cτ � r0.

It is important to emphasize that the DIPS and
selective compression of separated pulses described
here can take place only for the dynamical Bragg dif�
fraction of radiation in the Laue geometry. These phe�
nomena do not emerge if the Bragg diffraction scheme
“for reflection” is used, because, in this case, there are
only two [1] rather than four waves, as in the Laue
scheme, propagating in the structure and no splitting
of the incident pulse into the Borrmann and anti�Bor�
rmann ones is possible. Note also that DIPS is essen�
tially a coherent effect. As was shown in [24], taking
into account the partial spatial and temporal coher�
ences of radiation leads to deterioration of the observ�
ability of the dynamical diffraction phenomena, for
example, to a smoothing of the pendulum effect.
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Therefore, in the case of diffraction of partially coher�
ent radiation, one should expect a “blurring” of the
perfect picture of the spatial field distribution corre�
sponding to complete coherence of the diffracted
waves (Fig. 5) and, as a consequence, a decrease in the
efficiency (to the point of complete suppression) of
diffraction�induced pulse splitting.

The spatial localization of the fields for the Bor�
rmann and anti�Borrmann modes in the correspond�
ing PC layers shown for spectrally confined pulses (see
Fig. 5) is also observed in phase�modulated pulses
undergoing compression inside the PC. The only
noticed exception is the case where there is a signifi�
cant detuning from the exact Bragg condition and the
center of the incident radiation spectrum is shifted by
a value of the order of the spectrum width. In this case,
the amplitudes of the transmitted and diffracted waves
in Eq. (15) are different; as a result, no standing waves
are generated.

4. CONCLUSIONS

We theoretically described the dynamical Bragg
diffraction of optical radiation in PCs—the diffrac�
tion�induced splitting of a spatially confined laser
pulse incident on PCs in the case of diffraction in the
Laue scheme. The selective compression and selective
focusing of the separated pulses, the Borrmann and
anti�Borrmann ones, have been predicted for the first
time. These results are not only of fundamental inter�
est but also of considerable applied one, because they
allow new methods for controlling the dynamics and
parameters of short laser pulses to be proposed.
Indeed, the Borrmann and anti�Borrmann pulses

actually propagate efficiently in different media due to
their different spatial localizations in layers, respec�
tively, with larger and smaller refractive indices of the
structure. Therefore, by specifying different optical
properties of the even and odd layers in the structure
or, for example, by dynamically changing these prop�
erties with an external force, we can control the
parameters (shape, polarization, amplitude, velocity,
etc.) of the Borrmann and anti�Borrmann pulses inde�
pendently. The selective compression and focusing of
optical pulses will make it possible to considerably
increase the yield of secondary, for example, nonlin�
ear, processes in PCs by increasing the intensity of the
Borrmann or anti�Borrmann pulse by more than an
order of magnitude. In this case, nonlinear signals will
be generated in different PC regions, predominantly in
either even or odd layers of the structure, depending
on the parameters of the input pulse—on the signs of
the parameters of its frequency or spatial phase modu�
lations and the detuning from the Bragg condition.
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