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Unstable excited and stable oscillating gap 2p
pulses
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Dynamics of the gap 2p pulse dynamics in one-dimensional resonantly absorbing Bragg gratings are studied.
A new family of stable oscillating and excited unstable gap 2p pulses is analytically and numerically described
by a transition from the two-wave Maxwell–Bloch equation to the modified sine-Gordon equation and by direct
integration of the two-wave Maxwell–Bloch equation. © 2002 Optical Society of America
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In recent years there has been vast interest in nonlinear
pulse propagation in photonic bandgap structures, or pho-
tonic crystals.1 It has been shown2–4 that, as a result of
nonlinear light–matter interaction, an intense laser pulse
can propagate at a frequency within the linear forbidden
Bragg gap band through a structure with different types
of nonlinearity; this is the so called gap soliton. A steady
gap soliton moves in a periodic structure as an optical
soliton does in a homogeneous medium, keeping its shape
and constant velocity. However, the existence of the pho-
tonic bandgap gives rise to specific properties of the gap
soliton dynamics; for instance, the pulse can stand with
zero velocity2,5,6 or oscillate periodically, changing its am-
plitude and the sign of its velocity.7,8 These oscillations
have been investigated in the framework of the general-
ized massive Thirring model for gap solitons in periodic
cubic materials.8 However, oscillations of the gap 2p
pulse of self-induced transparency in a resonant periodic
structure were demonstrated only numerically in the case
of a complicated set of equations in complex functions,7

and the physical nature of the oscillations has not been
described. Physically, it is clear that the oscillations are
caused by the photonic bandgap. If an optical soliton is
formed by an arbitrary pulse in a homogeneous medium,
part of the energy, which was not trapped by the soliton,
quickly leaves the region of the slow soliton in a form of
free linear radiation. In the gap soliton this untrapped
energy is fixed in weakly excited atoms and in a small
field that cannot propagate through the structure because
of the existence of a linear photonic bandgap. As a re-
sult, if the initial soliton velocity is slow enough, the gap
soliton that interacts with the perturbation cannot leave
the region of the interaction because its kinetic energy is
less than the potential energy of the interaction. This
blockage gives rise to gap soliton oscillations. In the
present paper we study the instability of the gap 2p pulse
of self-induced transparency in a resonantly absorbing
Bragg grating. It is shown that the initial problem for
the simple two-wave Maxwell–Bloch equations in real
functions is reduced to a modified sine-Gordon equation.
Therefore one can obtain an equation of motion to de-
scribe the evolution of the stable oscillating gap
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2p pulse and the unstable excited gap 2p pulse, which de-
cays to a steady soliton and a perturbation. The oscillat-
ing pulse is physically stable because it does not decay,
and it is unsteady because this solution is within a region
of oscillatory instability on the phase plane of the equa-
tion of motion. Solving a boundary problem, we explain
the physical nature of the delayed reflection and the de-
layed transmission of the gap 2p pulse when the inci-
dent pulse forms a gap 2p pulse at low velocity near the
boundary.

Let us consider the coherent interaction of light with a
one-dimensional resonantly absorbing Bragg grating con-
sisting of periodically distributed thin layers of two-level
oscillators. This model closely corresponds to a real
structure of periodically arranged quantum wells with
resonance excitons in a semiconductor.9,10 In the exact
Bragg condition, the problem of light–matter interaction
in a semiclassical approximation is described by the
coupled-mode two-wave Maxwell–Bloch (TWMB)
equations2 for the slowly varying envelope of the electric
field amplitudes of forward and backward waves E6, di-
mensionless polarization P, and the population difference
density of two-level oscillators n:

V t
1 1 Vx

1 5 P,

V t
2 2 Vx

2 5 P,

Pt 5 n~V1 1 V2!,

nt 5 2P~V1 1 V2!, (1)

where V6 5 2tc(m/\)E6, tc 5 (8peT1/3crl2)1/2 is the
cooperative time that characterizes the mean photon life-
time in the medium preceding resonant absorption,2 T1 is
the excited level lifetime, e is the dielectric constant of the
medium, r is the density of resonant oscillators, l is the
wavelength, c is the velocity of light, m is the matrix ele-
ment of the transition dipole moment, and x 5 x8/ctc and
t 5 t8/tc are dimensionless space and time coordinates,
respectively.

Using the solution of the Bloch equation P 5 2sin u,
where u is the Bloch angle, we reduce Eqs. (1) to the form
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Ṽx 1 V t 5 22 sin u,

Vx 1 Ṽ t 5 0,

u t 5 V, (2)

where V [ V1 1 V2 and Ṽ [ V1 2 V2. The second of
Eqs. (2) yields

Ṽ~x, t ! 5 2ux~x, t ! 1 f~x !. (3)

Then Eqs. (2) give the following equation for the Bloch
angle:

uxx 2 u tt 5 2 sin u 1 fx~x !. (4)

This is the modified sine-Gordon equation, for which the
function f(x) is determined by the initial condition in Eq.
(3):

f~x ! 5 Ṽ~x, 0! 1 ux~x, 0!. (5)

Thus, if the fields and the population inversion are absent
in a medium at t 5 0, i.e., Ṽ(x, 0) 5 0 and u(x, 0) 5 0,
or if the steady 2p pulse propagates through the structure
and Ṽ(x, t) 5 2ux(x, t),2 then f(x) 5 0, and Eq. (4) is re-
duced to the exact sine-Gordon equation that describes
the steady gap 2p pulse. In the general case f(x) Þ 0,
i.e., if there is a deviation from the exact gap 2p pulse so-
lution in initial condition (5), the gap soliton dynamics
will become more complicated. The second term on the
right-hand side of Eq. (4) describes the interaction of the
soliton of the exact sine-Gordon equation with a localized
perturbation and determines the dynamics of gap 2p
pulse oscillations and instability.

To solve Eq. (4) we use a simple energetic method,11

which allows one to obtain an equation of motion for the
soliton of the modified sine-Gordon equation when the
shape of the modified equation solution is close to the
shape of the exact sine-Gordon equation solution; i.e.,
function f(x) is assumed to be small. Rewriting Eq. (4) in
variables h 5 A2x, t 5 A2t, and f 8 5 f/A2, we get the
equation in a traditional form:

uhh 2 utt 5 sin u 1 fh8~h!. (6)

The Lagrangian density function for Eq. (6) is

L 5 1/2ut
2 2 1/2~uh 2 f 8!2 2 ~1 2 cos u!,

and the corresponding Hamiltonian density is

H 5 1/2ut
2 1 1/2uh

2 2 f 8uh 1 1/2 f 82 1 ~1 2 cos u!.
(7)

The first four terms on the right-hand side of Eq. (7) fix
the energy density @(V1)2 1 (V2)2#/2 of the forward and
backward waves in the structure.

Because the system is conservative, the total energy of
the localized solutions is the integral of motion,
(d/dt)*2`

` Hdh 5 0; then Eq. (7) yields

d

dt
E

2`

`

dhF1

2
ut

2 1
1

2
uh

2 1 ~1 2 cos u!G
5

d

dt
E

2`

`

dhf 8uh . (8)
Assuming that the shape of the unsteady solution of Eq.
(6) is close to that of the soliton of the exact sine-Gordon
equation, we write the desired solution for the 2p pulse as

u 5 4 tan21XexpH 2h 1 j~t!

@1 2 u2~t!#1/2J C, (9)

where u(t) is the time-dependent soliton velocity and
j(t) 5 *0

t u(t8)dt8 is the coordinate of the soliton center.
The overlap integral on the right-hand side of Eq. (8) fixes
the potential energy of interaction of the kink [Eq. (9)]
with the perturbation. Substituting Eq. (9) into Eq. (8)
and assuming that u2 is small, we find the following New-
ton equation of motion for the coordinate of the pulse cen-
ter:

jtt 5 2
1

4

]

]j
E

2`

`

sech~h 2 j!f 8~h!dh. (10)

Let us take the perturbation [Eq. (5)] in a simple form,
f 8(h) 5 f0 sech(h), which coincides with the shape of the
fields V6 in the exact 2p pulse solution.2 Then Eq. (10)
gives the following equation of motion of the pulse:

jtt 5 2Uj , U 5
f0

2

j

sinh j
. (11)

Equation (11) describes the motion of a unit mass
quasi-particle in potential U subject to the action of the
potential force, 2Uj . Note that generally the potential
energy of interaction U in is

U in 5
1

4
E

2`

`

sech~h 2 j!f 8~h!dh. (12)

The total energy of the particle [Eq. (11)] is u2/2 1 U
5 constant; therefore finite motion is possible if the po-
tential is attractive, f0 , 0, and the pulse velocity is suf-
ficiently small on the potential well bottom uu(j 5 0)u
, A2f0 [Fig. 1(a)]. This gap 2p pulse oscillates but does
not decay; it is unsteady but stable. An increase in the
initial velocity leads to escape of the pulse from the poten-

Fig. 1. Phase plane of Eq. (11) for (a) the attractive potential U
at f0 5 20.1 and (b) the repulsive potential at f0 5 0.1.
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tial well. If initial condition (5) corresponds to positive
f0 . 0, the potential of interaction U is positive, and the
pulse is repelled from the potential [Fig. 1(b)]. This
means that the pulse is unstable and can be described as
an excited gap 2p pulse, because it decays to the pertur-
bation and to the steady soliton whose kinetic energy
equals the energy of excitation (potential energy of inter-
action).

Solving Eq. (11), one obtains the law of motion j(t) in
integral form:

E
0

j dj8

~a 2 f0j8/sh j8!1/2 5 t, (13)

where a 5 u2(j 5 0) 1 f0 . If displacement of the soli-
ton is small compared with the width of potential j ! 1
and f0 , 0, the soliton executes a harmonic motion:

j 5 j0 sin vt, v2 5 2f0/6. (14)

The value of the frequency of oscillations is in a good
agreement with the results of numerical integration of
Eq. (1) [see Fig. 2(a), inset]. In a closer approximation,
Eq. (10) is reduced to the form

jtt 2
f0

6
j 1

7f0

180
j3 5 0.

Oscillatory solutions of this equation are the distinctly
anharmonic Jacobian elliptic functions.12

Fig. 2. Evolution of the initial gap 2p pulse (the gray scale is
proportional to n). The initial conditions at t 5 0 are fixed by
n 5 2cos u, P 5 2sin u, u 5 4 tan21 exp bA2(2x 1 x0)/
A1 2 u0

2c, and V6 5 V0
6 sechbA2(2x 1 x0)/A1 2 u0

2c, where
u0 is the initial pulse velocity. (a) V0

1 5 1.45 and V0
2

5 20.87 correspond to f0 5 20.4 and u0 5 0.2; (b) V0
1

5 2.34, V0
2 5 20.48; f0 5 20.4, and u0 5 0.55; (c) f0 5 0.07

and u0 ' 0. The contour lines correspond to the perturbation
f(x, t) calculated from Eq. (3) for the initial condition f(x)
5 A2 f0sechbA2(2x 1 x0)/A1 2 u0

2c. Inset, square of the fre-
quency of pulse harmonic oscillations as a function of perturba-
tion obtained by analytical calculation from Eq. (14) (solid curve)
and by numerical integration of Eqs. (1) (dashed curve).
As follows from Eqs. (2) and (3), the expressions for the
forward and backward wave amplitudes are given by

V1 5 1/2~V 1 Ṽ! 5 1/2@u t 2 ux 1 f~x !#,

V2 5 1/2~V 2 Ṽ! 5 1/2@u t 1 ux 2 f~x !#,
(15)

respectively. Substituting solution (9) into Eqs. (15) and
into the Bloch equation solutions, and assuming that j t is
small, we get the desired approximate solutions for
TWMB equations (1):

V1 5 ~j t 1 A2 !sech@A2x 2 j~t !# 1 f~x !/2,

V2 5 ~j t 2 A2 !sech@A2x 2 j~t !# 2 f~x !/2,

n 5 2cos u 5 21 1 2 sech2@A2x 2 j~t !#,

P 5 22 sech@A2x 2 j~t !#tanh@A2x 2 j~t !#.
(16)

In general, the value j(t) is found from Eq. (10), and in
our special example [Eq. (11)] j(t) can be a periodic finite
or infinite function (Fig. 1). Note that the amplitudes of
fields V6 [Eqs. (16)] and their sum V depend on the ve-
locity u 5 j t , but the difference Ṽ does not depend on u.

The energetic method that we used above is convenient
but approximate, because one does not take into account
the change of the kink’s shape. Thus it is important to
check our analytical results by direct numerical integra-
tion of Eq. (1). Figures 2(a) and 2(b) illustrate the dy-
namics of the gap 2p pulse in the case of a relatively large
amplitude of the attractive potential [Eq. (11)], f0
5 20.4, for several initial pulse velocities. The results
were obtained by numerical integration of the initial
problem of Eqs. (1) under condition (5): f(x)
5 A2 f0 sech bA2(2x 1 x0)/A1 2 u0

2c, where u0 is the
initial pulse velocity. The small velocity u0 gives rise to
harmonic oscillations of the 2p pulse about the attractive
potential [Fig. 2(a)]. The shape of the pulse differs only
slightly from that of the soliton of the exact sine-Gordon
equation. The difference between the analytically [Eq.
(14)] and the numerically calculated values of the oscilla-
tion frequency is small [Fig. 2(a), inset]. Note that there
is good agreement with the analytical results, although
the values of f0 and j are not small. By increasing the
initial pulse velocity one gets the anharmonic oscillations
[Fig. 2(b)] that correspond to the anharmonic branch on
the phase plane in Fig. 1(a). In Fig. 2(c) the initial pulse
amplitudes V0

6 are chosen such that condition (5) corre-
sponds to the repulsive potential f(0) 5 A2f0 5 0.1 and
the initial velocity is close to zero. Therefore the solution
starts its evolution from the point of unstable equilib-
rium, which is near the center point in Fig. 1(b). This
initial gap 2p pulse is excited and unstable because the
pulse fields uV0

6u 5 uVs
6 6 0.05u are larger than the

fields in the steady standing gap 2p pulse uVs
6u

5 u6A2u. The sum of the fields, V 5 0, coincides with
the steady solution but the difference of the fields Ṽ0
5 2A2 1 0.1 is larger. This explains the pulse instabil-
ity. After some delay, the excited gap 2p pulse decays to
a steady moving soliton with velocity u 5 0.26 (u2

5 0.07 5 f0) and to the standing perturbation [Fig. 2(c)].
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Formally, this decay is described as a repulsion of the ini-
tial solitonlike solution by the positive potential under the
initial condition of unstable equilibrium [Fig. 1(b)].

The analytical analysis of the gap 2p pulse instability
in the initial problem described above allows us to explain
the dynamics of the gap 2p pulse formation near the
structure boundary, which is a realistic physical process.
Let us consider the boundary problem of the incident
field’s interaction with the structure by solving Eqs. (1)
numerically with the boundary conditions

V1~x 5 0, t ! 5 V0 sech@~t 2 t0!/t0#,

V2~x 5 l, t ! 5 0, V6~x, t 5 0 ! 5 0,

n~x, t 5 0 ! 5 21, P~x, t 5 0 ! 5 0,

where t0 is the duration of the incident pulse and l is the
structure length. Results of the numerical simulation for
various values of incident field amplitude V0 are pre-
sented in Fig. 3. If the incident field is large, the steadily
moving gap 2p pulse is formed after nonlinear reflection
of some part of the incident field [Fig. 3(a)]. Decreasing
the value of V0 leads to a more complicated dynamics.
Figure 3(b) demonstrates the delayed transmission of the
incident pulse. The almost standing excited unstable
gap 2p pulse with the very small positive velocity u ' 0
is localized in the structure. The depth of its penetration
is sufficient that the boundary influence can be neglected,
so it can be treated similarly to the unstable pulse in the
initial problem. Sum field V is equal to sum Vs of the
steady gap 2p pulse, but the difference field is larger:

Fig. 3. Evolution of the incident pulse in the structure (the gray
scale is proportional to n). Pulse duration, t0 5 0.84; ampli-
tudes V0 are (a) 2.701, (b) 2.70063, and (c) 2.70062. The contour
lines in (c) show the perturbation f(x, t) calculated from Eq. (3).
Inset, dependence of time delay tD on the depth of pulse penetra-
tion X.
Ṽ/Ṽs 5 1.00035. Therefore there is a small repulsive
potential [Eq. (12)]. The corresponding unstable initial
state is marked by a circle on the phase plane in Fig. 1(b).
After a delay, the excited gap 2p pulse decays to the mov-
ing steady gap 2p pulse and to the residual perturbation,
i.e., small standing waves and an inversion.

Numerical simulation shows that, if the amplitude of
the incident pulse is small, the influence of the boundary
on the process of the gap 2p pulse formation is significant.
During the process of nonlinear reflection, the small nega-
tive attractive potential [Eq. (12)] that corresponds to
negative function f(x) is formed in the area between the
pulse center and the boundary. Because of this attrac-
tion, the pulse cannot propagate into the structure and is
reflected [Fig. 3(c)]. The value of time delay tD of the in-
cident pulse, in this delayed reflection process, depends
exponentially on the depth of the pulse penetration and
may be 2 orders of magnitude greater than the duration
of the incident pulse. This fact may be interesting for
practical applications.

In summary, it has been shown that besides the tradi-
tional moving and standing gap 2p pulses,2,5,7 which are
steady soliton solutions, there is a class of stable oscillat-
ing and unstable excited gap 2p pulses. A mathematical
reason for the existence of this class of pulses lies in the
structure of the TWMB equations, which have an addi-
tional degree of freedom because of the backward Bloch
field and can be transformed into the exact sine-Gordon
equation only when there are special initial conditions.
In a general case of arbitrary initial conditions, the
TWMB equations demonstrate new coupled and unstable
solutions. Physically, the oscillations and instability
arise as a result of the interaction of the slow gap 2p
pulse with localized small-field and excited two-level
oscillators. The structure of the periodic layers of two-
level systems discussed here is a good model for
the realistic periodic structure of quantum wells
In0.04Ga0.96As/GaAs.9,10 If the resonant exciton density
is 1.7 3 1012 cm23, the dipole moment of transition is m
5 9 3 10229 Cm, the wave length is 830 nm, and the co-
operative time is tc 5 0.3 ps, then to observe the oscillat-
ing gap 2p pulse one needs an energy of the incident laser
pulse of ;1.3 mJ/cm2 for a pulse duration of 0.34 ps.
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