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We consider the interaction and stability of gap solitons in a one-dimensional, resonant, photonic crystal
with a defect state produced by a linear localized mode, or by an incoherent pump. Soliton propagation is
investigated using both an analytical treatment and the direct numerical integration of the two-wave Maxwell-
Bloch equations. Our results demonstrate that the soliton can be trapped, reflected from, or tunnel through the
defect state.
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The high level of current interest in light dynamics within
periodic structures, or photonic crystals(PCs), is due to a
combination of improvements in fabrication and the novel
physics associated with such nonlinear periodic structures
[1–4]. The periodic variation of the material properties re-
sults in a forbidden band gap, in which light cannot propa-
gate in the linear regime. By including a resonant[5], cubic
[6], or quadratic[7] nonlinear material within the structure, it
is possible to realize a situation where a slow, gap soliton can
propagate through the stop band. In such structures, coupling
of the two Bloch waves which are created by the periodic
nature of the material produces a slow gap soliton(GS)
whose amplitude and velocity experience periodically
change [8–10]. In this paper, we consider resonant PCs
where the nonlinearity is due to the retarded coherent re-
sponse of resonantly absorbing material. We develop an ana-
lytical model to describe the propagation of gap solitons and
their interaction with a localized linear mode or defect state.

The properties of resonant photonic crystals(RPCs) can
be modeled using a Maxwell-Bloch system of coupled par-
tial differential equations. This formalism has been studied in
Ref. [10], where a Langrangian was derived and a relevant
center-of-mass equation was found. In turn, this enabled
them to find the bound state of theperturbedGS and the
localized linear wave of the RPC. This type of interaction
may become important in the case of theexact GS if its
propagation is accomplished by an excitation of a weak lin-
ear mode of the RPC that may be caused by a residual local-
ized resonant field, created, for example, by an incoherent
pump, or periodicity breakup. Indeed, it has already been
shown that the resonant GS can be trapped by a steady-state
structural defect[11] or a region of localized gain[12,13].

In this paper, the interaction between the exact GS and a
localized linear mode in a one-dimensional(1D) resonant,
photonic crystal is investigated using both an analytical treat-
ment and numerical integration of the two-wave Maxwell-
Bloch equations. The interaction between the solitons and
the defect state is shown to modify the GS dynamics, result-
ing in trapping, reflection, and deflection of the soliton path.
The same effects are also observed when the GS traverses a
defect state composed of resonant centers, atoms, ions, or
excitons which are incoherently inverted. Therefore, we
demonstrate the possibility of controlling an intense GS by

means of a weak linear field or by a low-intensity incoherent
pump, that is, without creating a defect.

The propagation of a scalar field through a 1D PRC,
which consists of a periodic sequence of alternating thin lay-
ers containing two-level centers with a period equal to the
resonant wavelength, is governed by the following set of the
normalized Maxwell-Bloch equations[8,10]:

Vt + Ṽx = − 2 sinu, s1ad

Ṽt + Vx = 0, s1bd

ut = V, s1cd

where V=V++V−, Ṽ=V+−V−, Psx,td=−sin u sx,td is the
dimensionless resonant polarization,nsx,td=−cosu sx,td is
the inversion population,V± are the slow amplitudes of the
forward and backward waves,u sx,td is the Bloch angle,t
andx are the dimensional time and propagation coordinate,
respectively, and the subscript refers to the corresponding
derivative.

An invariable quantityGsxd associated with this set can be
obtained after some manipulations from Eqs.(1b) and (1c),

Ṽsx,td + uxsx,td = Gsxd. s2d

This conservation parameter is defined by the initial condi-
tions and does not change as the light pulse evolves inside
the RPC structure. However, it does dictate the behavior of
the GS in the sense that setting it equal to zero provides a
GS, whereas a nonzero value ofGsxd leads to a GS instability
and trapping inside the RPC. It is clearly seen from the rel-
evant substitution that transforms Eq.(1a) into the perturbed
sine-Gordon equation for the Bloch angleu,

uxxsx,td − uttsx,td = 2 sinusx,td + Gxsxd, s3d

where the perturbation is now defined by the conservation
parameterGsxd.

In order to elucidate the interaction between the exact GS
and localized linear modes, we apply the approach developed
earlier in Ref.[10], following which the coordinate of the GS
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center-of-massjstd can be defined from a classical equation
of motion of the particle with unit mass,jtt=−Fj, with an
effective potential of the interactionFstd=1/4e−`

+`dxGxu x
sld,

whereu sld is the linear localized mode defined as a solution
of the steady-state linear equation,

uxxsx,td = 2 u sx,td + Gxsxd. s4d

Now assume that the conservation value has the form
Gsxd=G0 sechsÎ2 xd, the physical meaning of which is an

appearance of the nonzero difference fieldṼ which, in turn,
generates a low-intensity localized perturbation. Making use
of this conservation quantity along with assuming
u sld~exps−Î2uxud gives the localized solution of the per-
turbed Eq.(4)

u sldsxd =
G0

Î2
hÎ2x coshsÎ2xd − sinhsÎ2xdlnf2 coshÎ2xgj.

s5d

Subsequently, the localized linear Bloch wavesV±sx,td and
medium polarizationPsx,td can now be defined by the in-
variant (2) and conditionV=0 as follows:

±V±sxd = Ṽsxd/2, s6ad

Ṽsxd = G0 sechsÎ2xd − u x
sldsxd, s6bd

Psxd = − u sldsxd. s6cd

These solutions are presented in Fig. 1, where the relevant
comparison says that the resonant polarizationPsxd and
Bloch-angle derivativeu sld /x are much smaller than the dif-

ferenceṼ between the forward- and backward-propagating
waves. This means that the perturbation term in Eq.(3) is
mainly driven by this difference component. This is consis-
tent with the physical meaning of the linear localized mode.

FIG. 1. The difference fieldṼsxd=V+sxd−V−sxd (solid line) and
polarizationPsxd=−u sldsxd (dotted line), corresponding to the linear
mode atG0=1.

FIG. 2. Dynamics of kink(k) and antikink(ak) interaction with
the localized linear mode as an inversion projection onto thesx,td
plane; Gsxd=G0 sechfÎ2sx−x0dg ,x0=200,u=0.03. Notice the dif-
ference between single-pulse elastic scattering at the localized lin-
ear mode withG0=0.015(a) and inelastic kink-antikink collision at
localized linear modes withG0=0.01 (b) and G0=0.012 (c),
correspondingly.
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It is a steady-state optical field localized on resonant centers
which are slightly excited above the ground state such that
Psxd, ,1 andnsxd<−1.

In application to the problem of the interaction of the
exact GS with such a localized mode(5) and(6), it allows us
to rewrite the interaction potential as

Fstd =
G0

4
E

−`

+`

sechsÎ2xdṼsx,tddx. s7d

If the GS is represented by the antikink solution of the sin-
Gordon equation,

usx,td = 4 arctanFexpSÎ2f− x + jstdg
Î1 − u2std

DG , s8d

with ustd=jt being the velocity of the soliton, the fieldṼ is
equal to

Ṽsx,td =
2Î2

Î1 − u2
sechFÎ2sx − jd

Î1 − u2 G , s9d

and can be large enough for the potential(7) to exceed the
kinetic energy,u2/2, of the slow GS. WhenG.0, the linear

mode of the RPC reflects the GS withṼ.0 (antikink) and

captures that one withṼ,0 (kink), which is shown in Fig.
2(a) When GÞ0, the two-wave Maxwell-Bloch equations
are nonintegrable and are reduced to the perturbed sine-
Gordon equation; the combined action of the slow velocity
of the GS soliton propagation and perturbation makes the
soliton interaction inelastic[14]. The kink GS is reflected by
the attractive potential(9) at the collision with the antikink
[Fig. 2(b)], but a subtle increase of theG0 leads to the kink
trapping and an oscillating GS appears[Fig. 2(c)] that is the
bound state of the GS and linear mode[10].

It is straightforward to assume that the dynamics of slow
GSs may also be controlled by means of their interaction
with other perturbations. As a relevant example, Fig. 3 shows
the results of the numerical integration of the Maxwell-Bloch
equations(1) for the case of the GS interaction within a
length of incoherently excited resonant atoms with

nsx,td = − 1 +v sechfÎ2sx − x0dg. s10d

A significant feature here is again a kink trapping in the
form of the oscillating GS that follows its collision with the
antikink GS and the escape of the latter from the interaction
area; a considerable change of the velocity of the antikink
GS is also noticeable.

In conclusion, we have demonstrated that by using an
analytical method, interesting and previously unforeseen
properties of GSs in RPCs can be predicted and explained in
a physically transparent form. The most important result is

the fact that we are able to show that the oscillating GS
created because of the linear perturbation can be described,
at least qualitatively, as an effective-potential-like effect. Us-
ing this method, we were able to obtain qualitative agree-
ment with direct numerical solution. Future work on GS dy-
namics can be directed toward an examination of new
features that may be brought about by the implementation of
our findings on, say, a semiconductor device format. Recent
experiments reported on linear and nonlinear light dynamics
in InxGa1−xAs/GaAs periodic multiple-quantum-well struc-
tures[15,16], and success in the manufacturing of Er-doped
Al xGa1−xAs/GaAs nanostructures[17] suggests that the be-
havior predicted in this paper might be experimentally fea-
sible at light intensity,10 MW/cm2. This value is consis-
tent with the experimental observation of gap solitons in
AI xGa1−xAs using the half-band-gap nonlinearity where in-
tensities of,1GW/cm2 were used[3] and recent predictions
of gap solitons in coupled microring resonators with intensi-
ties of ,50 MW/cm2 have been estimated. The use of a
resonant nonlinear system should result in optical intensity
levels which can be easily attained using current laser tech-
nology. The use of a resonant photonic crystal to investigate
the dynamics of gap solitons will lead to a rich and complex
physical system which promises to generate novel physical
results.

This work was supported in part by the Nortel Institute for
Telecommunications at the University of Toronto, Photonics
Research Ontario, and by the Russian Foundation for Basic
Research.

FIG. 3. The inversion projectionnsx,td for kink (k) and antikink
(ak) interaction on the incoherent inversion length withv=0.11 and
x0=250.
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