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1. INTRODUCTION

Recent development of new nonlinear optical mate-
rials, photonic crystals [1, 2], has motivated extensive
studies of parametric conversion in periodic nonlinear
structures [3]. Photonic crystal is an artificial structure
with periodically modulated dielectric constant (in the
general case, in three dimensions). When the modula-
tion period is comparable to an optical wavelength, a
light wave cannot propagate into the structure if its fre-
quency or angle of incidence lies within a certain range
called photonic band gap (PBG) [4]. Photonic crystals
are characterized by strong localization of the energy of
a pump (fundamental) beam whose frequency or angle
of incidence corresponds to a PBG edge. The increase
in pump energy density leads to higher amplitudes of
polarization waves and, as a consequence, to higher
intensities of Raman sidebands generated in parametric
conversion processes. For one-dimensional photonic
crystals, this effect was investigated in [5, 6]. We call it
non-phase-matching enhancement. In [7], it was shown
analytically that the energy of a localized pump wave
can be proportional to the number of photonic-crystal
periods cubed. Therefore, non-phase-matching
enhancement provides a very efficient method for
enhancing nonlinear wave interaction in periodically
structured materials, whereas the intensities of signals

generated in homogeneous media cannot increase
faster than the sample length squared. It is well known
that conversion of pump energy into Raman sidebands
is efficient only when phase or group-velocity matching
conditions are satisfied, as in birefringent crystals [8],
artificial crystals with regular domain structure [9–11],
or optical waveguides [12–14]. Since phase matching
and non-phase-matching enhancement conditions are
combined in photonic crystals [15–17], conversion effi-
ciency can be additionally enhanced in photonic crys-
tals as compared to homogeneous materials. For a pho-
tonic crystal about ten micrometers thick, the efficiency
of energy conversion from fundamental into second-
harmonic field can exceed 10% [18, 19], which is
higher than the efficiency of nonlinear optical conver-
sion in a homogeneous nondispersive medium of simi-
lar thickness. Strong spatial dispersion near the PBG
edge [4] can compensate for the material dispersion in
a photonic crystal, ensuring phase-matched interaction
between fundamental and generated waves in nonlinear
processes. We call this effect dispersion phase match-
ing (DPM). Simultaneous fulfillment of the DPM and
non-phase-matching enhancement conditions was pre-
dicted theoretically in [15] and demonstrated experi-
mentally in [16] for second harmonic generation.
Another mechanism of compensation of phase mis-
match between interacting waves in photonic crystals
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involves the reciprocal lattice vector and is known as
quasi-phase-matching (QPM) [10]. QPM conditions
are generally fulfilled for counterpropagating pump and
signal waves, whereas DPM is characteristic of coprop-
agating waves. Sum-frequency generation under QPM
conditions combined with non-phase-matching
enhancement conditions was demonstrated in [17].
Material dispersion can also be compensated for sig-
nals generated in nonlinear liquid crystals of certain
types [20–22], which can essentially be treated as natu-
ral photonic crystals. However, the refractive-index
modulation amplitude in these crystals is not sufficient
for achieving significant non-phase-matching enhance-
ment.

According to [15], second harmonic generation can
be implemented in a photonic crystal under phase
matching conditions for effective wavevectors [23] if
the fundamental and second-harmonic frequencies are
tuned, respectively, to the first and second transmission
resonances relative to the corresponding PBG center
frequencies. Experimental evidence of the correspond-
ing second-harmonic intensity peak was obtained in
[16, 24] for structures specially designed to meet these
conditions. However, the efficiency of second harmonic
generation under non-phase-matching enhancement
conditions has never been analyzed for fundamental
wave and second harmonic tuned to other transmission
resonances. The parameters of periodic structures and
pump beams corresponding to optimal efficiency of
Raman sideband generation are generally calculated by
using effective wavevectors [4, 23] in conventional
phase matching conditions similar to those for waves
propagating in infinite homogeneous media. In this
method, the field propagating in a layered structure is
represented as a superposition of Bloch modes charac-
terized by effective wavevectors instead of Bloch vec-
tors. However, a real photonic crystal cannot be treated
as a homogeneous medium even approximately. The
field inside a bounded crystal has a very complex struc-
ture consisting of Bloch modes with spectral widths

 

∆k ~ 2

 

π/L, where L is the sample length. Therefore, if
the shift between two proximate Bloch modes with
comparable amplitudes is approximately equal to 

 

∆k
(when the pump is tuned near the PGB edge), then the
corresponding spectral lines merge, and the resulting
profile has a peak shifted relative to the effective
wavevector. Accordingly, the phase matching condi-
tions calculated for modes with finite spectral widths
may be shifted relative to the phase matching condi-
tions calculated by using effective wavevectors (corre-
sponding to Bloch modes with narrow spectral lines),
and the maximum shift is 

 

π/L. For example, the peak
intensities and frequencies of the second-harmonic and
sum-frequency signals measured in [17] were shifted
relative to those corresponding to the exact phase con-
ditions calculated for effective wavevectors.

In this study, we use a special noncollinear geome-
try to ensure non-phase-matching enhancement in a
wide frequency range and apply the transfer matrix for-

1

2

3

malism [25] to demonstrate the possibility of efficient
second harmonic generation in a thin one-dimensional
photonic crystal when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
In this case, even though the conventional phase match-
ing conditions calculated for effective wavevectors cor-
responding to Bloch modes with narrow spectral lines
are not satisfied, the signal intensity exceeds that of the
second harmonic satisfying the conventional phase
matching conditions [15, 16]. This effect is explained
by analyzing dynamics of coupled modes and taking
into account the overlapping in both pump and signal
spectra. We propose modified phase matching condi-
tions written for the centers of profiles resulting from
modal overlap in the spatial spectra of coupled waves.
We show that optimal conditions for efficient coupling
between the pump and signal waves are substantially
different in the cases of strong and weak Bragg diffrac-
tion in a photonic crystal.

The paper is organized as follows. In Section 2, we
formulate the problem, outline the method of solution,
and describe the periodic structure to be examined. In
Section 3, we analyze the spatial spectra of waves prop-
agating through periodic structures. The results of Sec-
tion 3 are used in Section 4 to explain the behavior of
the frequency profiles of second-harmonic intensity
obtained in the cases of weak and strong diffraction.

2. SECOND HARMONIC GENERATION
NEAR THE EDGE OF THE PHOTONIC BAND 
GAP IN A BOUNDED PHOTONIC CRYSTAL

We consider second harmonic generation in a stack
of N bilayers characterized by quadratic nonlinearity,
with thicknesses d1 and d2 and complex frequency-
dependent refractive indices n1(

 

ω) and n2(

 

ω), on an infi-
nite substrate with complex refractive index nsubs. Their

second-order susceptibilities  and are assumed
to be constant for simplicity (subscripts 1 and 2 refer to
odd and even layers, respectively). Pump beams with
frequencies

 

ω1 and 

 

ω2 are incident from vacuum onto
the crystal surface at arbitrary angles 

 

θ1 and 

 

θ2, respec-
tively, to the normal vector. The z axis is aligned with
the normal vector and directed into the crystal, the x
axis is parallel to its surface, and the xz plane is the
plane of incidence of the fundamental waves.

Owing to quadratic nonlinearity, a polarization
wave with frequency 

 

ω1 + 

 

ω2 is created in the photonic
crystal, which gives rise to a sum-frequency signal at
ω3 = 

 

ω1 + 

 

ω2. The pump and sum-frequency fields
inside the crystal, E1, 2(r, t) and E3(r, t), and the input
and output fields (in vacuum and substrate, respec-
tively) are found by solving the nonlinear wave equa-
tion

(1)
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Here, D(r, t) = n2(r)E(r, t) is electric induction,

is the nonlinear polarization vector, and c is the speed
of light in free space. In this study, the transfer matrix
formalism [17, 25] is applied to solve Eq. (1) in the
monochromatic plane-wave approximation for a pre-
scribed pump field. This model is valid for pulses of
duration up to 200–300 fs [6, 17] and weak nonlinear-
ity. Under these assumptions, the transfer matrix for-
malism can be used to obtain an exact solution to Eq.
(1) (with second spatial derivatives) describing the
complex multiple-mode structure of localized fields in
a thin photonic crystal.

Hereinafter, we consider the degenerate case of
sum-frequency signal with 

 

ω1 = 

 

ω2 = 

 

ω and 

 

ω3 = 2

 

ω. To
optimize the fundamental-wave parameters with
respect to maximum generated signal intensity, we use
the noncollinear beam geometry illustrated by Fig. 1a,
which ensures fulfillment of the non-phase-matching
enhancement condition in a wide frequency range. We
vary 

 

ω and angle of incidence 

 

θ simultaneously to sat-
isfy the non-phase-matching enhancement condition,
i.e., to maximize the energy W of the field localized in
the structure (Fig. 1b),

where z = 0 and z = L = N(d1 + d2) are the input and out-
put surfaces of the photonic crystal. The mismatch
parameters

 

∆DPM and 

 

∆QPM corresponding, respectively,
to dispersion phase matching and quasi-phase matching
conditions are expressed in terms of effective wavevec-
tors as

(2)

(3)

where  denotes the z components of the pump (i =
1, 2) and signal (i = 3) waves, H = 2

 

π/(d1 + d2) is the
magnitude of the reciprocal lattice vector, and l is an
integer called quasi-phase-matching order. Expression
(2) is analogous to the phase mismatch for a homoge-
neous medium, while the term proportional to Hl in (3)
takes into account the contribution of Bloch modes due
to Bragg diffraction in a periodic structure. The param-
eters in (2) and (3) vary with 

 

ω and 

 

θ. Phase matching
corresponds to

(4)

Since the fundamental waves have equal frequen-
cies, the corresponding wavevectors are symmetric rel-
ative to the normal: θ1 = +θ0 and θ2 = –θ0, where the
angle of incidence θ0 ensures non-phase-matching
enhancement for a particular ω. Since the tangential

PNL r t,( ) χ 2( ) : E r t,( )E r t,( )=

W n2 z( ) E z( ) 2 z,d

0

t

∫=

∆DPM k1z
eff k2z

eff k3z
eff–+( )L,=

∆QPM k1z
eff k2z

eff k3z
eff Hl–+ +( )L,=

kzt
eff

∆DPM ∆QPM, π/2.≤

components of the electric field vectors are continuous
across layer boundaries [23], the “angle of incidence”
θ3 for the second harmonic is zero for any ω.

Figure 2a shows the intensities I(+) and I(∠) of the
transmitted and reflected second-harmonic signals in
the geometry considered here versus normalized fre-
quency for the stack of 15 bilayers with n1(ω) and n2(ω)
corresponding to AlOx and AlGaAs (nonlinear optical
material), respectively [16]. Here, d1 = λ0/3n1(ω0) and
d2 = 3λ0/4n2(ω0), where λ0 = 2πc/ω0 and ω0 is a refer-
ence frequency; the substrate is vacuum. The intensity
I(±) is normalized to that of the second-harmonic signal
with frequency 2ω0 generated in a homogeneous non-
dispersive medium of thickness D = Nd2 with refractive
index n2(ω0). Figures 2b and 2c show, respectively, the
second-harmonic reflectivity and the phase mismatch
parameters ∆DPM and ∆QPM, respectively. The phase
matching order is l = 4, and all waves are s-polarized.

The second-harmonic intensity spectrum shown in
Fig. 2a exhibits two peaks whose locations are indi-
cated by vertical dash-dot lines A and B. The former
corresponds to the zero of ∆DPM associated with the sec-
ond transmission resonance (relative to the second-har-
monic PBG center frequency). The existence of this
peak was demonstrated in [15, 16, 24]. The latter is
associated with the first second-harmonic transmission
resonance and is not related to any zero of ∆DPM or
∆QPM. This intensity peak is more than an order of mag-
nitude higher than the former one; i.e., the correspond-
ing phase matching conditions cannot be formulated in
terms of effective wavevectors corresponding to Bloch
modes with narrow spectral lines, as in (2) or (3). Its
location should therefore be explained by analyzing a
multiple-mode structure in order to find phase match-
ing conditions different from (2)–(4).

2ω

2ω

ω ω

(a)

–θ0 +θ0

(b)

1

W(arb. units), R

θ0 θ

WR

Fig. 1. Second harmonic generation: (a) noncollinear geom-
etry; (b) reflectivity R (dash-dot curve) and energy W of
localized electric field (solid curve) of the pump beam vs.
angle of incidence θ (θ0 corresponds to non-phase-match-
ing enhancement).
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3. SPATIAL SPECTRA OF WAVES DIFFRACTED 
NEAR THE PHOTONIC BAND-GAP EDGE

In the model presented above, an effective wavevec-
tor keff(ω) is calculated to characterize the propagation
of a wave with frequency ω through a multilayered
stack. The linear properties of a photonic crystal are
characterized by a dispersion curve shown in Fig. 3
(right solid branch). Any layered structure generates a
reflected (backward) wave. Since the magnitude of the
corresponding wavevector is equal to that of the for-
ward wave, the reflected-wave dispersion curve is sym-
metric to the forward-wave one relative to the ω axis
(left solid branch in Fig. 3). However, Bragg diffraction
in a periodic structure must give rise to a Bloch wave
related to the incident wave by the Bragg condition k2 =
k + mH, where m is the number of the PBG responsible
for diffraction; i.e., in addition to waves with wavevec-
tors keff and –keff, there must exist Bragg-diffracted
waves with keff – mH and –keff + mH (see Fig. 3). Thus,
we must consider four waves propagating in a photonic

crystal if diffraction is to be taken into account: two for-
ward and two backward ones.

The existence of waves with wavenumbers keff – mH
and –keff + mH is easy to demonstrate for a structure
with continuous dielectric constant ε(z), because nei-
ther Fourier series expansion of solutions nor their
matching at the points of discontinuity is required in
this case. Since wave propagation in periodic structures
is governed by qualitatively similar relations, we can
consider a crystal with harmonically modulated dielec-
tric constant:

where ε0 is the background dielectric constant, µ is the
modulation depth, H = 2π/d is the reciprocal lattice vec-
tor, d is the modulation period, L = ΛN is the crystal
length, and z = 0 and z = L are the input and output ends
of the modulated crystal. The electric field distribution
E(z) in a linear medium is found by solving Eq. (1) with
zero right-hand side [23].

Within the interval [0, L], the electric field of a plane
electromagnetic wave with frequency ω can be repre-
sented as

(5)

where kx = k0sinθ is the tangential component of the
wavevector, k0 = ω/c is the wavevector magnitude in

free space, k = k0  is the wavevector magnitude in
the medium, and θ is the angle between the wave prop-
agation direction and the z axis. The complex amplitude
E0(z) is expressed as

ε z( )
ε0, z 0 L,[ ],∉
ε0 1 µ Hz( )cos+[ ], z 0 L,[ ],∈
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E r t,( ) E0 z( ) i ωt kxx–( )[ ].exp=

ε0
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Fig. 2. Normalized frequency dependence: (a) normalized
intensities I(+) and I(–) of the transmitted and reflected sec-
ond-harmonic signals (solid and dashed curves, respec-
tively); (b) second-harmonic reflectivity R; (c) phase mis-
match parameters ∆DPM (solid curve) and ∆QPM (dashed

curve); ∆(+) (�) and ∆(–) (�). Vertical dash-dot lines A and
B indicate the peak second-harmonic intensities corre-
sponding to the second and first transmission resonances,
respectively.

Reflected signal Forward signal
ω

–k k
–keff – mH –keff keff –keff + mH

0

~ ~ ~ ~

~~

m–
H
2
---- m

H
2
----
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Fig. 3. Dispersion curves for forward (right) and reflected
(left) signals in single-mode approximation (solid curves)
and for diffracted signals. The hatched region corresponds
to PBG. Dots on dispersion curves correspond to the wave-
numbers of the forward (keff], backward (–keff), and Bragg-
diffracted (keff – mH, –keff + mH) waves.
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(6)

where A+(z) and A∠(z) denote the amplitudes of the for-
ward and backward waves, respectively, and

is the z component of the pump wavevector. We assume
that the dielectric-constant modulation depth is suffi-
ciently small to satisfy the condition for slowly varying
amplitudes,

If the diffracted waves are tuned near the edge of the
first PBG, then the parameter δ = kz – H/2 is a small
quantity.

Substituting (5) and (6) into (1) (with PNL set to
zero), neglecting the fast-oscillating terms, and separat-
ing the terms containing exp(ikzz) and exp(–ikzz), we
obtain the system of differential equations

(7)

subject to the boundary conditions

where  is the incident intensity on the left-hand
boundary between the homogeneous and modulated
media, and the latter condition means that no beam is
incident on the right-hand boundary.

Substituting the solution to (7) into (6), we obtain
the following expressions for the forward and back-
ward electric field amplitudes:

(8)

(9)

where

E0 z( ) E+ z( ) E– z( )+=
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α δ2 µk2
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2

– .=

We rewrite the real values of the electric field
strengths given by (8) and (9) as

(10)

(11)

where

Expressions (10) and (11) demonstrate that the field
propagating in medium with modulated dielectric con-
stant consists of four waves, with wavenumbers β+, β–
and –β+, –β– corresponding to forward and backward
waves, respectively, i.e., to keff, –keff + mH and –keff,
keff – mH with m = 1. Since any wave propagating in a
bounded photonic crystal has a finite spectral width
estimated as 2π/L, the modes with spectral lines sepa-
rated by ∆k overlap and the lines merge into a profile
with center shifted relative to their respective centers if

(12)

Let us show that the spectral components of a signal
tuned to the first transmission resonance (relative to the
PBG center frequency) satisfy condition (12).

The reflectivity R for a periodic structure is
expressed as

Transmission resonances are defined by the condition
R = 0, i.e.,
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where n is the number of a resonance, and the corre-
sponding wavenumbers are

Accordingly, ∆k = |β+ – β–| = 2πn/L, which entails ∆k =
2π/L for the first transmission resonance, in agreement
with condition (12). Thus, the modes centered at β+ and
β– substantially overlap.

As an example, we consider second harmonic gen-
eration in the stack of 20 bilayers with Λ/λ0 = 0.25,
ε0 = 4, and µ = 0.01 (which corresponds to weak Bragg
diffraction) in the case of normal beam incidence. Fig-
ure 4a shows the reflectivity plotted versus normalized
wave frequency for this structure. The third, second,
and first transmission resonances are indicated by A, B,

β+
H
2
----

πn
L

------, β–+ H
2
----

πn
L

------.–= =

and C, respectively. Figures 4b–4d show the spatial
spectra

plotted versus k normalized to 2π/L for waves tuned to
the resonances A, B, and C, respectively. Here, the spec-
tra of E–(z) and E+(z) correspond to k < 0 and k > 0,
respectively; vertical dash-dot lines, to keff – mH, –keff,
keff, and –keff + mH with m = 1. Figures 4b and 4c dem-
onstrate that the reflected-wave spectrum contains two
lines of equal intensity centered at keff – mH and –keff,
owing to diffraction of the incident wave. The spectrum
of the forward wave contains only the component cen-
tered at keff, whereas the one centered at –keff + mH (due
to reflected-wave diffraction) is absent in the case of
weak diffraction, because |E–(z)| ~ µ.

A totally different reflected-wave spectrum is
obtained for diffraction near the first transmission reso-
nance C (Fig. 4d). As shown analytically above, the
lines corresponding to keff – mH and –keff overlap and
merge into a single line. Figure 4d demonstrates that
the resulting reflected-wave line is centered at mH/2,
whereas the spectrum of the forward wave is still cen-
tered at keff.

To analyze the case of strong diffraction, we find the
spatial spectra of waves propagating in a medium with
cosinusoidally modulated dielectric constant having
the parameters specified above, except for µ = 0.5. The
equations for slowly varying amplitudes are not appli-
cable in this case, and the field distributions found
numerically by using the transfer matrix formalism.
Figure 5 shows the corresponding reflectivity and the
spatial spectra of the backward and forward waves plot-
ted in the same coordinates as those in Fig. 4.

Figure 5 demonstrates that the spectra of reflected
waves are qualitatively similar in the cases of both
weak and strong diffraction, differing only in ampli-
tude, whereas the forward wave has a distinct compo-
nent characterized by –keff + mH in the latter case. Its
intensity is higher at the transmission resonance B
(Fig. 5c) as compared to A (Fig. 5b), because Bragg
reflection becomes stronger as the pump frequency is
tuned closer to the PBG. Owing to the higher amplitude
of the component with –keff + mH, the center of the
spectral profile resulting from modal overlap for a wave
tuned to the first transmission resonance C is shifted
from keff in the direction of mH/2.

The results of this section concerning wave-cou-
pling efficiency in second harmonic generation can be
summarized as follows. Due to the spectral shifts of the
coupled waves involved in second harmonic generation
near the corresponding PBG edge, phase matching con-
ditions (2)–(4) do not hold for the reflected wave in the
case of weak diffraction and for both reflected and for-
ward waves in the case of strong diffraction. Thus, the

F k( ) 1
2πL
---------- Re E± z( )[ ] ikz( ) zdexp

0

L

∫ ,=

4
–k

keff
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(c)
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0.05
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(d)
0 0

0 0
–H/2 H/2

 wave  wave

Fig. 4. Weak Bragg diffraction in a structure with cosinuso-
idally modulated dielectric constant: (a) reflectivity vs. nor-
malized frequency. Spatial spectra of the forward and back-
ward waves for pump beams tuned to (b) third, (c) second,
and (d) first transmission resonances (A, B, and C, respec-
tively). Vertical dashed and dash-dot lines indicate, respec-
tively, H/2 components and the effective wavevectors of for-
ward, backward, and diffracted waves calculated in the sin-
gle-mode approximation.
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degree of spectral overlap of the coupled waves should
be taken into account in determining optimal condi-
tions for second harmonic generation. Since the highest
efficiency of coupling between the fundamental waves
and the second-harmonic signal is attained when the
sum of the wavenumbers of the strongest fundamental-
wave components (i.e., the wavenumber of the nonlin-
ear polarization wave) corresponds to the center of the
second-harmonic spectral profile, the modified mis-
match parameters

(13)

expressed in terms of the centers of broadened spectral
profiles should be used instead of (2) and (3), and the
modified phase matching conditions are written as

(14)

where the superscripts (+) and (–) correspond to the
forward and reflected pump (i = 1, 2) and signal (i = 3)
waves.

In particular, the centers of the reflected-wave spec-
tra in the case of strong diffraction of waves tuned near
the first transmission resonance are given by the exact

expression  = miH/2, where mi is the number of the
corresponding PBG. Accordingly, the mismatch
parameters defined by (13) can be written for both
reflected and transmitted waves as follows:

Figure 2 illustrates strong diffraction near the PBGs
with m1, 2 = 2 and m3 = 4, in which case we have ∆(±) =
(2 + 2 – 4)HL/2 = 0; i.e., the phase matching conditions
are satisfied exactly. This explains the existence of a
second-harmonic intensity peak at the point B in
Fig. 2a. Parameters (13) are shown as functions of fre-
quency for the forward (closed circles) and reflected
(open circles) waves in Fig. 2c, for which the centers of
spectral profiles were determined directly from the
computed spatial spectra. It is clear that phase matching
conditions (14) for broadened spectral lines hold near
the first transmission resonances.

4. SECOND HARMONIC GENERATION
NEAR THE POINT OF FORBIDDEN BRAGG 

REFLECTION: WEAK AND STRONG 
DIFFRACTION

Let us demonstrate that modified phase matching
conditions (13), (14) hold for second harmonic genera-
tion near the point of so-called forbidden Bragg reflec-
tion, which is observed when 2k = mH for a wave prop-
agating through a multilayer stack, whereas each indi-
vidual layer can transmit light without reflection. In this
case, total transmission occurs instead of the total
reflection dictated by the Bragg condition. In particular,
forbidden Bragg reflection is observed when a beam is

∆ ±( ) k1
±( )

k2
±( )

k3
±( )

–+( )L,=

∆ ±( ) π/2≤

ki
–( )

∆ ±( ) m1 m2 m3–+( )HL
2

--------.=

normally incident on a stack of alternating layers of two
types whose optical thicknesses are multiples of the
beam half-wavelength λ: di = pλ/2ni, where p is an inte-
ger and ni (i = 1, 2) are the refractive indices of the lay-
ers.

Let us examine the variation of the intensity I(±) with
increasing refractive-index contrast ∆n = |n1 – n2| for
the second harmonic generated near the point of forbid-
den Bragg reflection for waves with frequency 2ω when
the incident wave is tuned near the PBG edge. As an
example, we consider noncollinear second harmonic
generation (see Fig. 1) in the stacks of 15 bilayers with
d1, 2 = 3λ0/4n1, 2, n1 = nsubs = 1, and different n2 for the
nonlinear even layers in the absence of material disper-
sion.

Figures 6a, 6b, and 6c show the intensities I(+) (left
ordinate axes) and I(–) (right ordinate axes) of the for-
ward and reflected second-harmonic signals, the sec-
ond-harmonic reflectivity R, and the mismatch parame-
ters ∆DPM and ∆(+) given by (2) and (13) for n2 = 1.1
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Fig. 5. Strong Bragg diffraction: (a) reflectivity vs. normal-
ized frequency; (b)–(d) spatial spectra under the corre-
sponding conditions specified in Fig. 4.
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(weak diffraction), 1.3 (intermediate case), and 1.5
(strong diffraction), respectively. The locations of
peaks of I(+)(ω) on the frequency axis are indicated by
vertical dash-dot lines. The intensities are normalized
as in Fig. 2. For the photonic crystal with the parame-
ters specified above, forbidden Bragg reflection is
observed if the second-harmonic frequency 2ω0 corre-
sponds to the central transmission resonance in the fre-
quency dependence of R (denoted by (0) in Fig. 6). The
first, second, etc. transmission resonances on its left
and right (denoted by (–1), (–2), (+1), and (+2)) are
analogous to those near the PBG in terms of both field
distribution and spectral profiles.

In Fig. 6a, the point of maximum intensity of the
forward second-harmonic signal coincides with the
zeros of the mismatch parameters ∆DPM and ∆(+). By vir-
tue of the beam geometry, the spatial spectra of both
forward and backward waves are analogous to those in
Fig. 4d. Accordingly, the spectrum of the forward wave

is centered at , where  is the z component of the
pump wavevector, and the curves of ∆DPM and ∆(+) coin-
cide. The second-harmonic spectra at (±2) and (±1) are
similar in form to those in Figs. 4c and 4d, respectively.
Thus, modified phase matching conditions (14) hold for
the forward signal near resonance (–2), where the stron-
gest spectral components of the coupled waves overlap,
and for the reflected signal near resonances (±1) and the
point of forbidden Bragg reflection.

In the case of intermediate diffraction (see Fig. 6b),
the reflected signal exhibits a qualitatively similar
behavior, with a higher second-harmonic intensity due
to stronger diffraction. The peak of the forward second-
harmonic intensity is shifted to the right from the point
where ∆DPM = 0, and the curves of ∆DPM(ω) and ∆(+)(ω)

2k1z
eff k1z

eff

do not coincide. These changes are explained by appre-

ciable contributions of the modes centered at –  +
mH to the spectra of linear and nonlinear forward
waves. The zero of ∆(+) coincides with the point of max-
imum I(+).

In the case illustrated by Fig. 6c, the components

centered at –  + mH strongly contribute to the spec-
tra of the forward waves. The spectral profiles resulting
from modal overlap at the fundamental-wave first trans-
mission resonances are very similar in form to those
shown in Fig. 5d, and their centers are located almost
exactly at mH/2. Accordingly, the peak intensities of
both forward and backward second-harmonic signals
correspond to transmission resonances (±1).

5. CONCLUSIONS

Second harmonic generation is considered as an
example to examine optimal conditions for nonlinear
wave coupling in a finite one-dimensional photonic
crystal in the cases of strong and weak Bragg diffrac-
tion. Special noncollinear beam geometry is used to
meet the non-phase-matching enhancement conditions
for the second-harmonic signal and determine the wave
parameters corresponding to the most accurate simulta-
neous fulfillment of phase matching conditions. When
the second harmonic is generated near the PBG or the
point of forbidden Bragg reflection, the phase matching
conditions for forward waves in the case of strong dif-
fraction and for reflected waves in the cases of both
strong and weak diffraction in a bounded medium differ
from the corresponding conventional phase conditions.
The modified phase matching conditions proposed here
for a finite photonic crystal are written for the centers of
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Fig. 6. Normalized intensities I(+) and I(–) of the transmitted and reflected second-harmonic signals (solid and dashed curves, respec-
tively), second-harmonic reflectivity R, and phase mismatch parameters ∆DPM (solid curves) and ∆(+) (�) vs. normalized frequency
for refractive-index contrast ∆n = 1.1 (a), 1.3 (b) and 1.5 (c). Vertical dash-dot lines indicate peak intensities of transmitted second-
harmonic signal.
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the spatial spectral profiles resulting from the overlap
of broadened lines, rather than for the effective
wavevectors of individual Bloch modes. These modi-
fied conditions are used to explain the enhanced phase-
matched second-harmonic generation predicted in this
study in the case when the fundamental-wave and sec-
ond-harmonic first transmission resonances coincide.
The results obtained here can also be used to analyze
conditions for efficient conversion by different mecha-
nisms (parametric amplification, Raman scattering,
etc.) in finite photonic crystals.
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