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Investigations of the dynamics of nonlinear wave
processes involving solitary nonlinear waves, or soli-
tons, are continuously attracted great interest in various
areas of natural sciences and engineering [1]. First of
all, this interest is associated with a rich variety of non-
linear dynamic systems in nature whose evolution is in
high extent determined by the unique properties of soli-
tons, namely, the conservation of the shape and velocity
during propagation and after interaction. Strictly speak-
ing, such properties are characteristic of only solutions
of completely integrable nonlinear dynamic equations
such as the sine-Gordon equation, Maxwell–Bloch
equations, nonlinear Schrödinger equation, etc., which
appear as a result of the use of certain approximations
when solving a number of physical problems. Using the
inverse-scattering method, one can mathematically
construct an infinite number of completely integrable
equations including those that, being taken with various
initial conditions, can have both traditional soliton
solutions and qualitatively new solutions called
zoomerons [2]. A zoomeron is stable when propagating
and interacting that is typical for a soliton, but it exhib-
its new dynamics such that its amplitude and velocity
oscillate considerably during motion, and a change not
only in the magnitude, but also in the sign of the veloc-
ity of the pulse is possible. For this reason, the appear-
ance of zoomeron-like equations in actual physical
problems would provide rich possibilities for studying
new dynamic laws for nonlinear systems and would
allow the generalization of various results concerning
soliton dynamics to the case of oscillating pulses.
Unfortunately, a physical phenomenon that is described
by the completely integrable zoomeron equation has
not yet found. At the same time, it is known [3] that a
change in the magnitude of the velocity of soliton-like
solutions in equations close to completely integrable is
possible, for example, in the trapping of the soliton by

perturbation, when oscillations with zero average
velocity arise near the perturbation, as well as in the
inelastic collision of pulses that is accompanied by the
single excitation and absorption of the internal mode of
the soliton [4]. Long-lived oscillations of the soliton
amplitude are also possible when the internal mode is
excited at nonzero frequency [5], but the velocity of the
soliton is conserved or changes insignificantly in this
case. The Bragg solitons of incompletely integrable
Maxwell–Bloch equations [6] and nonlinear
Schrödinger equations for coupled modes [7] are char-
acterized by dynamic multistability, when, under cer-
tain initial conditions, oscillations arise in the velocity
of the pulse with the characteristic change of the sign of
the velocity, but only for zero average value. Numerical
simulation of the dynamics of Bragg solitons in a reso-
nantly absorbed lattice in the case of small detuning
from the exact Bragg condition reveals strong oscilla-
tions of the amplitudes of Bloch waves and velocity of
the Bragg soliton propagating with nonzero average
velocity [8]. However, a physical cause of the appear-
ance of such pulse dynamics has not yet been under-
stood.

In this work, the problem concerning the excitation
of the internal mode in the standing Bragg soliton of the
self-induced transparency with perturbed envelops of
the direct and inverse Bloch waves is solved. It is shown
that two internal modes close in shape can be simulta-
neously excited at low and zero frequencies. As a result
of beatings of these modes, a periodic energy exchange
arises between the internal-mode fields and the reso-
nant subsystem of two-level atoms in the Bragg soliton,
which results in the appearance of oscillations in the
inversion of excited atoms in the Bragg soliton. The
solution is generalized to the case of a slowly moving
soliton. Such a soliton is already perturbed due not only
to the profile deformation, but also to inversion oscilla-

 

Optical Zoomeron as a Result of Beatings 
of the Internal Modes of a Bragg Soliton

 

B. I. Mantsyzov

 

Faculty of Physics, Moscow State University, Vorob’evy gory, Moscow, 119992 Russia
e-mail: mants@genphys.phys.msu.ru

 

Received June 22, 2005; in final form, July 12, 2005

 

A new solution of two-wave Maxwell–Bloch equations has been obtained analytically and numerically. It
describes the propagation of an oscillating nonlinear optical solitary wave, or optical zoomeron, in a one-dimen-
sional periodic resonant Bragg structure. It has been shown that the appearance of large oscillations in the veloc-
ity and total amplitude of Bloch modes of the pulse is caused by beating of internal modes of the perturbed
Bragg soliton. 

 

© 2005 Pleiades Publishing, Inc.

 

PACS numbers: 42.25.Fx, 42.50.Md, 42.65.Tg, 42.70.Qs



 

254

 

JETP LETTERS

 

      

 

Vol. 82

 

      

 

No. 5

 

      

 

2005

 

MANTSYZOV

 

tions accompanying the internal-mode beatings, which
results in strong oscillations of the amplitude, polariza-
tion, inversion, and velocity of the pulse. Such a
dynamics of a solitary wave is characteristic of a
zoomeron. The parameters of the solutions obtained by
the direct numerical integration of two-wave Maxwell–
Bloch equations agree well with the proposed analyti-
cal solution for the optical zoomeron-like pulse. The
time dependence of the zoomeron velocity is obtained
using the energy integral.

The problem concerning the coherent interaction of
laser radiation with a one-dimensional resonant Bragg
structure of periodically located thin layers containing
two-level oscillators is described by two-wave Max-
well–Bloch equations [9] for the slow complex ampli-
tudes of the electric field 

 

E

 

±

 

 of the direct and inverse
Bloch waves, average atomic dipole moment 

 

P

 

 normal-
ized to the transition dipole moment, and inversion @n:
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is the cooperative time; 
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 is the matrix element of the
transition density matrix; 
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dimensionless variables, where 

 

x

 

' and 

 

t

 

' are the space
coordinate and time, respectively, and 

 

c

 

 is the speed of
light; and the subscripts 

 

x

 

 and 

 

t

 

 stand for the respective
partial derivatives. Equations (1) are written under the
exact Bragg condition and for the identical frequencies
of radiation and resonance transition of oscillators.

We first obtain an expression for the internal mode
of the perturbed Bragg soliton with zero propagation
velocity and then generalize the solutions to the case of
a slowly moving soliton.

Equations (1) have the following integrals of motion
corresponding to the conservation of the total energy 
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and topological charge 
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 of the localized 
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) =
0 solution:
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We seek the solution in the form of the linear superpo-
sition of the deformed standing soliton solution of

Eqs. (1), 
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, , and small perturbation 
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,  satis-
fying the second of Eqs. (1.1):

(3)

Ωt Ω̃x+ 2P, Ω̃t Ωx+ 0,= =

Pt nΩ, nt
1
2
--- P*Ω PΩ*+( ).–= =

Ω̃

W
1
4
---ΩΩ*

1
4
---Ω̃Ω̃* 1 n+( ) x,d++

∞–

∞

∫=

Q Ω̃ x.d

∞–

∞

∫=

Ω̃s δΩ̃

Ω x t,( ) Ωs x( ) δΩ, Ω̃ x t,( )+ Ω̃s x( ) δΩ̃,+= =

 

Here,

(4)

soliton components have the form 
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 is the param-
eter of the soliton profile deformation such that 

 

α

 

 = 0
corresponds to the exact soliton solution; 

 

ε

 

 is a small
real parameter; and 

 

f
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) and 

 

ϕ
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) are real functions. The

choice of perturbation 

 

δΩ

 

,  in the form of imaginary
additions (a phase shift of 

 

π

 

/2 with respect to the soliton
solution is generally necessary) ensures the elimination

of cross terms (  +  + c.c.) = 0 in

the energy integral given in Eqs. (2). Thus, we exclude
the interaction of the field components of the soliton
with the internal mode but remain the possibility of the
interaction of the internal mode with resonant oscilla-
tors. This interaction is described by Bloch equations
(1.2), which have the following solutions for fields (3)
and (4):

(5)

where 

 

b

 

 is the integration constant determined from the
initial conditions. Substituting Eqs. (3)–(5) into initial
equations (1.1) and linearizing under the conditions 

 

ε

 

,

 

ω
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 � 1, we arrive at the expressions

(6)

if b = 1 – α/2. Here, φ0 is the initial phase and the func-
tion amplitudes f0 and ϕ0 satisfy the conditions εf0,
εϕ0 � 1. In what follows, f0 = 1. The corresponding
equation for the function ϕ(x) has the form

(7)

Using perturbation theory, it is easy to show that the
eigenvalue problem specified by Eq. (7) has the finite
localized solution

(8)

if

(9)

Substituting Eqs. (6) and (8) into Eq. (4) and omit-
ting the εω2 terms, we obtain the following expressions
for the found internal modes:
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A low frequency of oscillations (9) is determined by the
parameter of the soliton profile deformation α < 0. The

difference field  given in Eqs. (10) is the superposi-
tion of two modes with nonzero and zero frequencies.
The forms of these modes ~  are deter-
mined by functions ϕ1x (6) and ϕx (8) and coincide with
each other in the first approximation in the small
parameter. This leads to effective beatings of these
modes with the oscillating-mode frequency ω if |ϕ0| ≈
1. Note that the presence of the zero-frequency internal
mode for unperturbed soliton solutions [case ω = 0 in
Eq. (10)] is a characteristic feature of a number of non-
linear dynamic equations including the sine-Gordon
equation [3]. Figure 1 shows the results of the numeri-
cal integration of Eqs. (1) with the initial conditions in
the form of the analytical solutions given by Eqs. (3),
(5), and (10) for the standing soliton with the internal
mode. The absence of losses on the emission of contin-
uous spectrum waves indicates that the solutions found
for the internal mode are stable. The oscillation fre-
quency (see the inset in Fig. 1) and the form of the inter-
nal mode agree well with analytical results (9) and (10).

δΩ̃

βx βxtanhsech

In addition, this figure shows that, owing to beatings,
the energy of the internal-mode fields varies from zero
to a certain maximum value. In this case, the energy of
the system of excited two-level atoms changes by the
corresponding value due to a change in the conversion
n(x, t) given by Eq. (5). In the case considered above for
the Bragg soliton with zero velocity, the beatings of the
internal modes do not change the soliton velocity. How-
ever, for the moving Bragg soliton, a change in the
maximum inversion of atoms in beatings of the internal
modes is an additional perturbation of the soliton and
can lead to a considerable change in the pulse propaga-
tion velocity.

Let us generalize the solutions obtained for the per-
turbed standing soliton given by Eqs. (3), (5), and (10)
to the Bragg soliton propagating with low velocity v �
ω. We assume that the form of the envelop of the
envelop of the perturbed moving soliton coincides with
the form of the exact solution [9], and the form of inter-
nal modes slightly differs from above expressions (10).
Let the pulse center coordinate ξ(t) and its velocity
v(t) = ξt(t) depend on time due to the perturbation of the
soliton in the presence of beatings of the internal
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Fig. 1. Space–time dynamics of the difference field  of the internal modes of the Bragg soliton in the presence of beatings of
two modes with nonzero and zero frequencies. The inset shows the square of internal-mode oscillation frequency ω vs. the soliton-
profile perturbation parameter α (dashed line) as calculated by Eq. (9) and (solid line) as obtained by numerically integrating Eqs.
(1) with initial conditions (3), (5), and (10).
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Fig. 2. Dynamics of the (a) inversion n(x, t), (b) difference (x, t) (arb. units), and (c) total δΩ(x, t) (arb. units) internal-mode
fields of the zoomeron-like pulse. The vertical dashed straight line corresponds to the time t = τ at which the amplitudes of internal-
mode fields are equal to zero and the velocity of the pulse is maximal.
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modes. Thus, the trial solution is chosen in the form

(11)

Substituting Eqs. (11) into the energy integral given in
Eqs. (2), we arrive at the following expression for the
pulse velocity:

(12)

As follows from Eqs. (11) and (12), the velocity and
field amplitudes in the pulse, as well as the dipole
moment and the inversion of atoms in the perturbed
Bragg soliton, oscillate with the frequency of the inter-
nal mode of soliton (9), thus exhibiting the zoomeron-
like dynamics of the pulse propagation.

In order to verify that the proposed trial solution
given by Eq. (11) is sufficiently close to the exact solu-
tion, as well as to demonstrate the stability of such a
zoomeron-like solution, we perform the direct numeri-
cal integration of Eqs. (1) taking analytical solution
(11) as the initial conditions. As is seen in Fig. 2, the
space–time dynamics of the inversion and internal-
mode fields obtained in this integration correspond to
analytical expressions (11). Similar results are also

valid for the fields Ωs and  of the soliton components
of the solution and for the function of the dipole
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moment P. Topological charge (2) of the oscillating
pulse obtained in numerical simulation satisfies the ine-
quality Q < 2π, which corresponds to the analytical
result with the substitution of solution (11) into Eq. (2):
Q = 2π + απ, where α < 0. At the initial stage of the evo-
lution of the solution, weak emission occurs (Fig. 2b),
but the energy losses in this process are very small
(about 0.05% of the pulse energy), which indicates that
the trial zoomeron-like solution is close to the exact
solution. The found zoomeron-like solution is quasis-
table, conserves stability for about one hundred oscilla-
tion periods, and elastically interacts with the soliton
moving with velocity v ≥ 0.1. The collision of two
zoomeron-like pulses can be both elastic and inelastic,
depending on the velocity and signs of the amplitudes
of interacting pulses. The comparison of the plots in
Fig. 2 provides a clear explanation of the cause of the
appearance of oscillations in the zoomeron-like pulse.
At t = τ, when the pulse velocity is maximal (see
Fig. 2a), the amplitudes of the internal-mode fields are
equal to zero (see Figs. 2b and 2c). Further, the energy
of internal modes increases due to the emission of the
energy of excited medium atoms (the maximum inver-
sion at the pulse center becomes less than unity in this
case, see Fig. 3), the pulse stops and then the energy of
the internal modes are absorbed by resonant atoms and
the pulse is accelerated, again reaching the maximum
velocity. Therefore, one can conclude that oscillations
in the zoomeron-like pulse occur due to the beatings of
the internal modes and to the energy exchange between
the internal modes and resonant atoms, as follows from

Fig. 3. (Solid line) Trajectory of the Bloch vector R(x = x0;
t) = {ReP; ImP; n} on a unit sphere at a certain point of the
medium x = x0 when the zoomeron-like pulse propagates.
The dashed lines correspond to the projections of the shown
trajectory on the coordinate planes. Each loop of the trajec-
tory corresponds to one oscillation of the pulse.
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analytical solutions (11) and (12). Moreover, the
numerical simulation results confirm form (12) of the
time dependence of the velocity of the zoomeron-like
pulse and the linear frequency dependence of the max-
imum velocity. Thus, the solution given by Eqs. (11)
and (12) for the zoomeron-like pulse well reproduces
the dynamics of the oscillating pulse that is obtained in
the direct numerical integration of two-wave Maxwell–
Bloch equations (1).

In conclusion, we note that the two-wave Maxwell–
Bloch equations, as follows from a number of the prop-
erties of their solutions, are incompletely integrable. It
is difficult to expect that these equations have an exact
zoomeron solution, which is an oscillating soliton of
integrable nonlinear equations. For this reason, the
approximate zoomeron-like solution described in this
work is of interest as likely the first example of oscillat-
ing quasistable nonlinear solitary waves with nonzero
average propagation velocity and a large amplitude of
velocity oscillations, which appear in an actual physical
problem, namely, in the problem concerning the propa-
gation of laser pulses in the resonant Bragg structure.
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