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Over the past decade, the propagation dynamics of
laser pulses in the photonic band gap structures, or pho-
tonic crystals [1], has been the subject of active studies,
both theoretical [2–6] and experimental [7]. Because of
the nonlinear interaction of radiation with such struc-
tures, the standard linear dispersion relations change
qualitatively. As a result, Bragg solitons (BSs) [2–4],
i.e., optical pulses with Bragg frequencies, can propa-
gate in the linearly forbidden photonic gaps of the
structures with different types of nonlinearity. Contrary
to the solitons in continuous medium, the BSs are char-
acterized by two propagation regimes: a regime with a
constant velocity and an oscillating regime [5, 6] for
which the pulse amplitude and the velocity magnitude
and direction change periodically. A resonant oscillat-
ing 2

 

π

 

 pulse was obtained earlier in [5] by solving
numerically the problem on BS in a weakly distorted
Bragg lattice. However, the physical nature of BS oscil-
lations has not been revealed because of the lack of ana-
lytic solutions. It is shown in this work that the oscillat-
ing 2

 

π

 

 pulse can arise when the Bragg conditions are
exactly met. For the appropriate two-wave Maxwell–
Bloch equations, the initial value problem reduces to a
modified sine-Gordon equation (SGE). An analytic
expression is obtained for the BS oscillation frequency,
and the BS propagation regimes are described for dif-
ferent initial conditions.

Let us consider the coherent interaction of an
intense laser radiation with a one-dimensional resonant
Bragg lattice, whose structure consists of a set of peri-
odically arranged thin layers containing two-level
oscillators [2, 5]. This model closely corresponds to a
real structure of periodically arranged quantum wells
with resonance excitons in semiconductors [7]. The fre-
quency of incident radiation coincides with the fre-
quency of the two-level transition, and, for the Bragg
condition to be met exactly, the structure period should
be a multiple of the radiation half-wavelength. Under

these conditions, the interaction of radiation with the
structure is described by the two-wave Maxwell–Bloch
equations [2] for real functions in the dimensionless
variables 

 

x

 

 = 

 

x

 

'/

 

c

 

τ

 

c

 

 and 

 

t

 

 = 

 

t

 

'/

 

τ

 

c

 

(1)

where 

 

Ω

 

±

 

 = (2

 

τ

 

c

 

µ

 

/

 

"

 

)

 

E

 

±

 

; 

 

E

 

±

 

 are the smooth field-ampli-
tude envelopes of the forward and backward Bloch
waves; 
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c

 

 is the cooperative time; 

 

µ

 

 is the matrix ele-
ment of the dipole transition moment; 

 

P

 

 and 

 

n

 

 are the
polarization and density of inverse population, respec-
tively; 

 

c

 

 is the speed of light; 
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' and 
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' are, respectively,
the time and spatial coordinate along the normal to the
resonance planes in the structure; and the subscripts 

 

x

 

and 

 

t

 

 imply partial derivatives.
By using the solution 
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 to the Bloch equa-
tions, where the Bloch angle 

 

θ

 

 is determined from the
condition 
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, Eq. (1) can be rewritten as
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. From the second
equation in Eqs. (2) it follows that

(3)

Then the following equations are obtained for the
Bloch angle from Eqs. (2):

(4)

This equation is a modified sine-Gordon equation, with
the function 

 

f
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x

 

) being determined by the initial condi-
tion in Eq. (3):
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Therefore, if the fields and inverse population are

absent in a medium at 

 

t

 

 = 0, i.e., if (
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, 0) = 0 and
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, 0) = 0, or if the stationary BS propagates in the

structure and (
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) = 0 and
Eq. (4) transforms into the exact SGE describing a
nonoscillating gap 2

 

π pulse. In the general case of
f(x) ≠ 0, the BS dynamics differs substantially from that
described in [2]. The second term on the right-hand side
of Eq. (4) corresponds to the interaction between a
kink-solution of the exact SGE and a localized pertur-
bation and gives rise to the oscillating regime of the 2π
pulse.

The results of numerical integration of the original
set of Eqs. (1) are presented in Fig. 1 for the nonzero

initial conditions (5) f(x) = f(0) . For
the low initial BS velocities and f(0) < 0 (Fig. 1, curve a),
the oscillations of the BS amplitude and velocity are
harmonic, the soliton shape is virtually identical with
that of the solution to the exact SGE, and the oscillating
BS is localized near the f(x) function. The oscillation
frequency depends on the f(0) value. An increase in the
initial velocity leads to a change in the form of oscilla-
tions (Fig. 1, curve b). It is demonstrated below that
these oscillations obey the law of motion in the form of
an elliptic sine. Finally, if the initial velocities are high,
the soliton escapes from the f(x) localization region and
propagates as a free BS with a constant velocity and
without oscillations (Fig. 1, curve c). As the amplitude
of the function in initial condition (5) changes sign, i.e.,
if f(0) > 0, then the BS is repelled from the interaction
region and also propagates with a constant velocity and
without oscillations (Fig. 1, curve d).

To analyze this BS dynamics, we use a simple
“energetic” method [8], which allows the law of motion
to be determined for the soliton of modified SGE (4) in
the case where its shape differs only slightly from the
shape of the exact solution to the SGE. Let us substitute

η = x, τ = t, and f ' = f/  and rewrite Eq. (4) in
the standard form:

(6)

The Lagrangian density function for Eq. (6) is

the corresponding Hamiltonian density is

(7)
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Note that the first four terms on the right-hand side of
Eq. (7) are equal to the energy density [(Ω+)2 + (Ω–)2]/2
of the forward and backward waves in the structure.

Since the system is conservative, the total energy of
the localized solutions is the integral of motion,

 = 0, so that from Eq. (7) it follows that
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Fig. 1. Equivalue lines for the density n(x, t) of on inverse
population in a medium with the Bragg soliton propagating
with different initial conditions. The black lines correspond
to n = 1 and the white background corresponds to n = –1. At
t = 0, the inversion and polarization are given by n = –cos(θ)
and P = –sin(θ), respectively, where θ =

4  and x0/  is the initial coordi-

nate of the soliton center; the fields are Ω± =

, where  = 1.41 and  = 0.85 for

curve a corresponding to the soliton velocity u = 0.2;  =

2.12,  = 0.14, and u = 0.7 for curve b; and  = 2.21,

 = 0.06, and u = 0.76 for curve c. In all cases, f0 < 0 and

 = 0.75. For curve d, f0 > 0 and  are the same as

for curve a.
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Making use of the fact that the shape of the oscillating
soliton given by Eq. (6) differs only slightly from the
solution to the exact SGE, one can write the desired
solution for a 2π pulse propagating in the positive
direction of the η axis as

(9)

where u(τ) is the time-dependent soliton velocity and

ξ(τ) = (τ')dτ' is the coordinate of the soliton center.

The overlap integral on the right-hand side of Eq. (8) is
the potential energy of interaction between kink (9) and
the perturbation. Substituting Eq. (9) into Eq. (8) and
taking into account that u2 and uτ ! 1, one obtains the
following equation of motion for the coordinate of
pulse center:

(10)

Let f '(η) = f0 . The results of numerical integra-
tion of the original set of Eqs. (1) with the correspond-
ing initial conditions are shown in Fig. 1. Then it fol-
lows from Eq. (10) that

This equation can be recast as

(11)
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Equation (11) describes the quasiparticle motion in the
potential U in the field of potential force –Uξ. Since the
total “energy” of the particle u2/2 + U = const, a finite
motion is possible only in the attractive potential, i.e.,
only if f0 < 0, and for a sufficiently low velocity |u(ξ =

0)| < , i.e., at the bottom of the potential well. This
agrees well with the results of numerical calculations
(Fig. 1, curve a). An increase in the soliton velocity
leads to its escape from the potential well (Fig. 1, curve
c). If the initial conditions (5) are such that f0 > 0, the
interaction potential U is positive and the BS is repelled
from the perturbation (Fig. 1, curve d).

The solution to Eq. (11) gives the law of BS motion
ξ(τ) in the following integral form:

(12)

where α = (ξ = 0) + f0. By expanding the integrand
in Eq. (12) in powers of ξ, one obtains, to second order
in ξ, the following expression for the harmonic oscilla-
tions of BS with small deviations of the pulse center
from equilibrium, ξ ! 1, and f0 < 0:

(13)

To the next order in ξ, the law of motion takes the form
of an elliptic sine. The oscillation frequency of a gap 2π
pulse, as obtained by the numerical integration of
Eqs. (1) and calculated using Eq. (13), is shown in
Fig. 2 as a function of f0. One can see that the analytic
formula agrees well with the numerically calculated
dynamics of an oscillating 2π pulse.

Note in conclusion that the BS propagation dynam-
ics is more complicated than the dynamics of optical
solitons in continuum. This is caused by the interaction
of BS with weak fields and medium excitation, which
are localized within the Bragg band gap. The oscillating
BS is a stable bound state of a high-energy pulse, close
to the stationary soliton, and a low-energy perturbation.
The latter needs not be necessarily static. The results
obtained in this work can easily be extended to the
“traveling” initial conditions through the transition to
the moving frame of reference. In this case, the mean
velocity of the oscillating BS will be nonzero. The
oscillating 2π pulse can be observed experimentally,
e.g., in the periodic structure of In0.04Ga0.96As/GaAs
quantum wells [7, 9], where the density of resonance
excitons is 1.7 × 1012 cm–3, the dipole transition
moment µ = 9 × 10–29 C m, the wavelength λ = 830 nm,
and τc = 0.3 ps. The corresponding pulse energy per unit
area is equal to 1.3 µJ/cm2 for the oscillating BS at a
pulse duration of 0.34 ps.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-17314.
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Fig. 2. The square ω2 of the frequency of harmonic oscilla-
tions of the Bragg soliton (ω is in units of τc/c) vs. f0; (m) are
obtained by numerical integration of the set of Eqs. (1) and
(d) are calculated using analytic expression (13).
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