Механика

Лекция 11

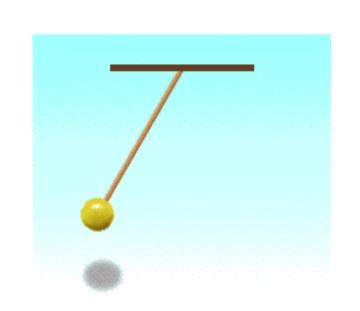
План лекции

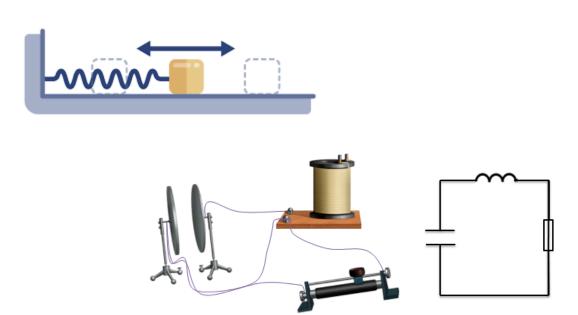
- Свободные колебания систем с одной степенью свободы.
- Гармонические колебания.
- Амплитуда, частота и период колебаний. Фаза и начальная фаза.
- Сложение гармонических колебаний. Фигуры Лиссажу.
- Затухающие колебания. Коэффициент затухания и логарифмический декремент затухания. Время релаксации. Добротность колебательной системы.
- Вынужденные колебания.

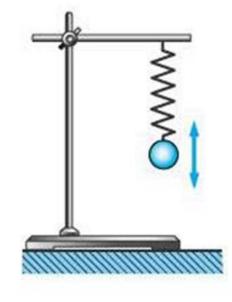
Колебания

Колебания — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Например, при колебаниях маятника повторяются отклонения его в ту и другую сторону от вертикального положения; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.





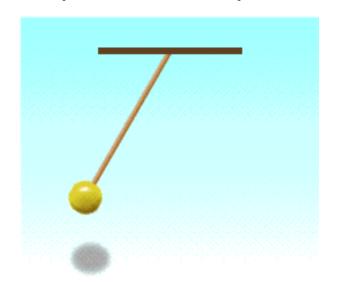


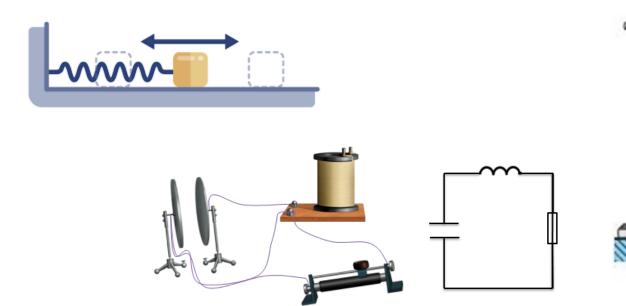
Свободные колебания систем с одной степенью свободы

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму. Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны с волнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний и волн.

Принципиальное отличие от волн: при колебаниях не происходит

переноса энергии.





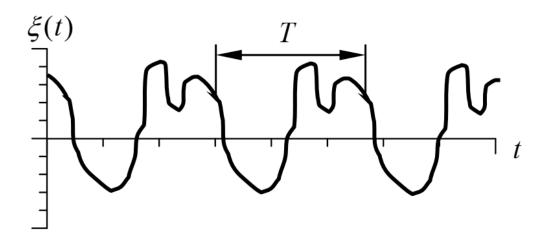
Механические колебания

• Механические колебания — это повторяющееся ограниченное движение тел механической системы относительно некоторого своего положения. При этом обобщенные координаты, определяющие положения тел системы в пространстве, ограниченно изменяются около некоторого своего значения.

• Периодический механический процесс — движение тел механической системы, точно повторяющееся во времени.

Свободные колебания систем с одной степенью свободы

• **Период** *T* — минимальный интервал времени, через который процесс в точности повторяется.



Зависимость обобщенной координаты $\xi(t)$ от времени в случае периодического процесса.

• Свободные (собственные) колебания — колебания системы, предоставленной самой себе (при постоянных внешних условиях).

Пружинный маятник

В качестве простейшей колебательной системы рассмотрим груз, подвешенный на пружине в поле силы тяжести. Предположим, что груз может совершать только вертикальные колебания. Будем считать, что система является консервативной, то есть в ней отсутствуют силы трения.

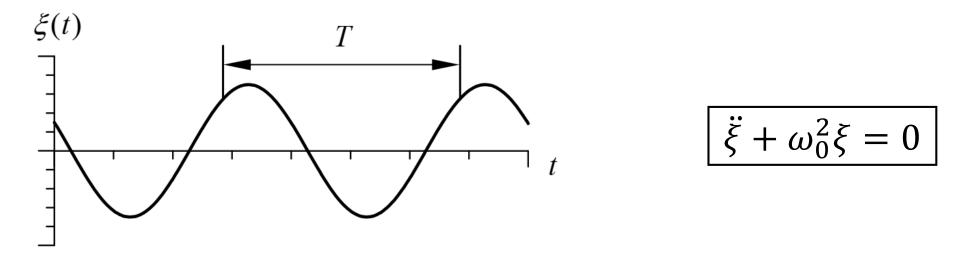
Пружинный маятник – это тело, прикрепленное к невесомой пружине.

$$\ddot{x} + \frac{k}{m}x = 0$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

Уравнение собственных гармонических колебаний

Гармонические колебания – процесс, при котором физическая величина ξ(t) меняется по гармоническому закону.



где

 ξ — одна из **обобщенных координат** — независимых физических величин, определяющих положение тел системы;

 ω_0 – угловая частота

Закон собственных гармонических колебаний

Уравнение собственных гармонических колебаний: $\ddot{\xi} + \omega_0^2 \xi = 0$

Закон движения при собственных гармонических колебаниях (зависимость обобщенной координаты от времени) — решение уравнения собственных гармонических колебаний:

$$\xi(t) = A\cos(\omega_0 t + \varphi_0)$$

Здесь $(\omega_0 t + \varphi_0)$ – фаза колебаний;

A — амплитуда;

 φ_0 — **начальная фаза** собственных гармонических колебаний, определяемые начальными условиями.

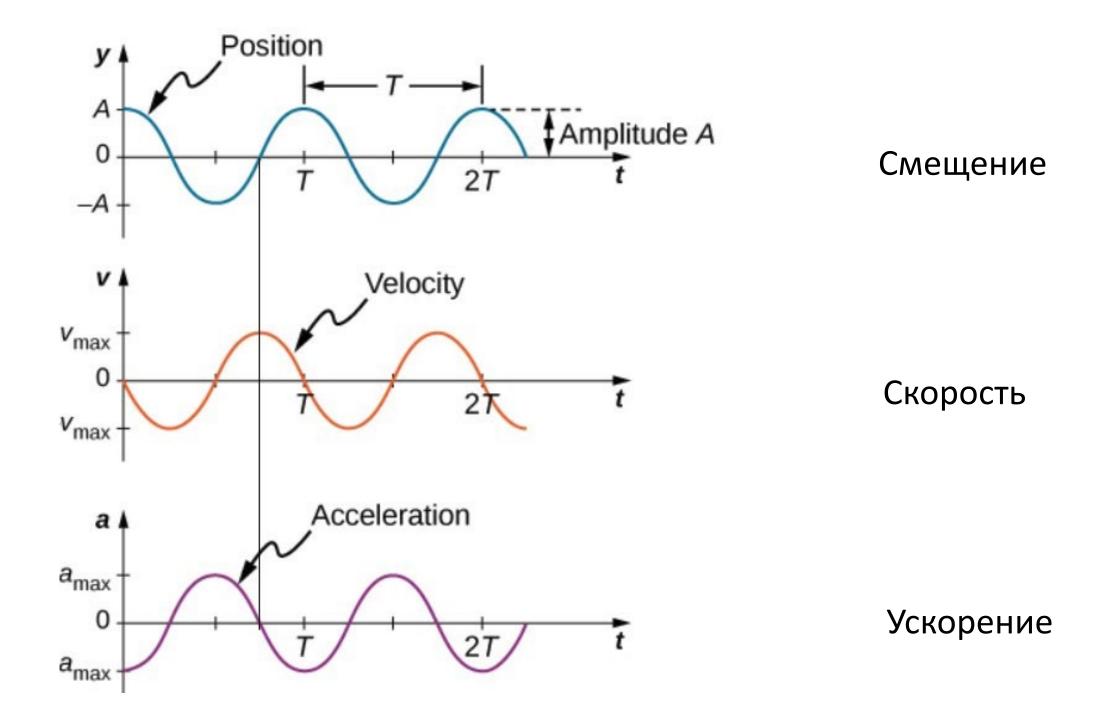
Начальные условия

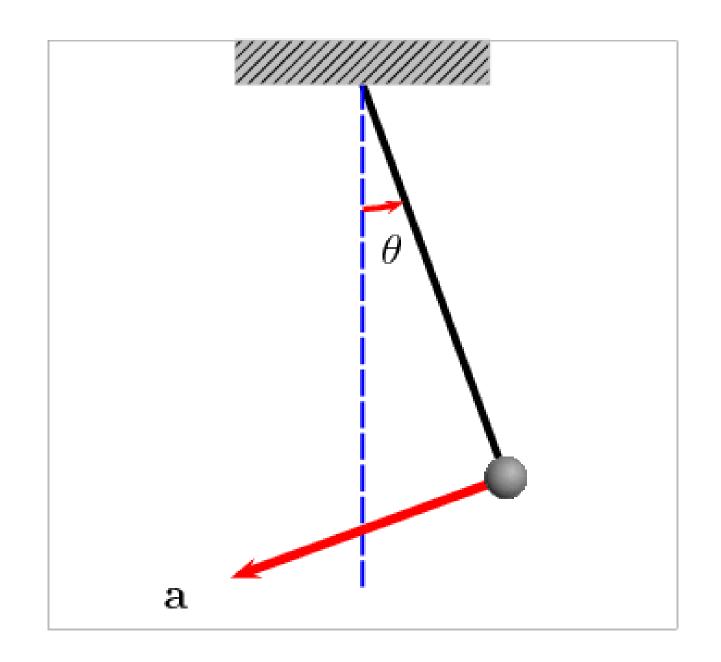
$$\xi(t) = A\cos(\omega_0 t + \varphi_0)$$

Амплитуда A и начальная фаза φ_0 колебаний определяются начальными условиями. Например, в начальный момент времени известно смещение маятника равно и начальная скорость.

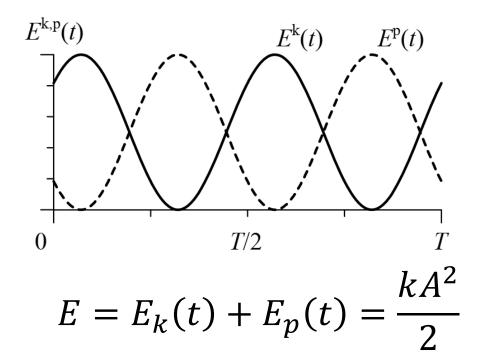
$$A = \sqrt{\xi_0^2 + \left(\frac{\dot{\xi}_0}{\omega_0}\right)^2} \qquad \qquad \varphi_0 = -\omega_0 t_0 - \arctan\left(\frac{\dot{\xi}_0}{\omega_0 \xi_0}\right)$$

Для рассматриваемых колебаний не только смещение, но и скорость, и ускорение являются гармоническими функциями времени.





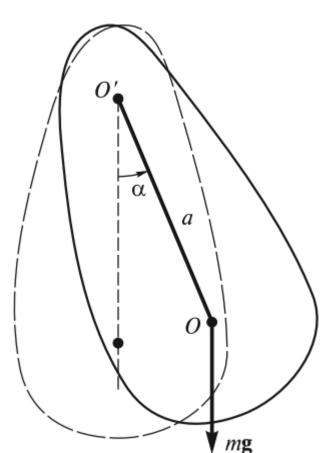
Энергия свободных колебаний



Так как в рассматриваемой системе отсутствуют силы трения, то полная энергия колебаний с течением времени не изменяется, причем наблюдается периодическая перекачка кинетической энергии в потенциальную и наоборот.

Кинетическая и потенциальная энергии пружинного маятника изменяются в противофазе по гармоническому закону с частотой $2\omega_0$ и одинаковыми амплитудами. Механическая энергия пружинного маятника, равная сумме кинетической и потенциальной энергий, остается постоянной в процессе колебаний

Физический маятник



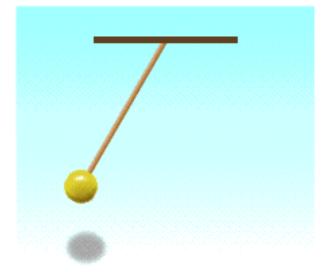
Физический маятник - абсолютно твердое тело, подвешенное в поле сил тяжести.

Рассмотрим колебания физического маятника относительно горизонтальной оси, в процессе которых все материальные точки физического маятника движутся в параллельных плоскостях.

$$\ddot{\alpha} = -\frac{mga}{J}\alpha$$

$$\omega_0 = \sqrt{\frac{mga}{J}}; \quad T = 2\pi\sqrt{\frac{J}{mga}}$$

Математический маятник



$$\omega_0 = \sqrt{\frac{g}{l}}$$

$$\frac{d\vec{L}}{dt} = \sum \vec{M}$$
$$\vec{L} = [\vec{r} \times \vec{p}]$$

Математический маятник - материальная точка, подвешенная на невесомой нерастяжимой нити в поле сил тяжести.

Рассмотрим колебания математического маятника относительно горизонтальной оси, происходящие в одной плоскости.

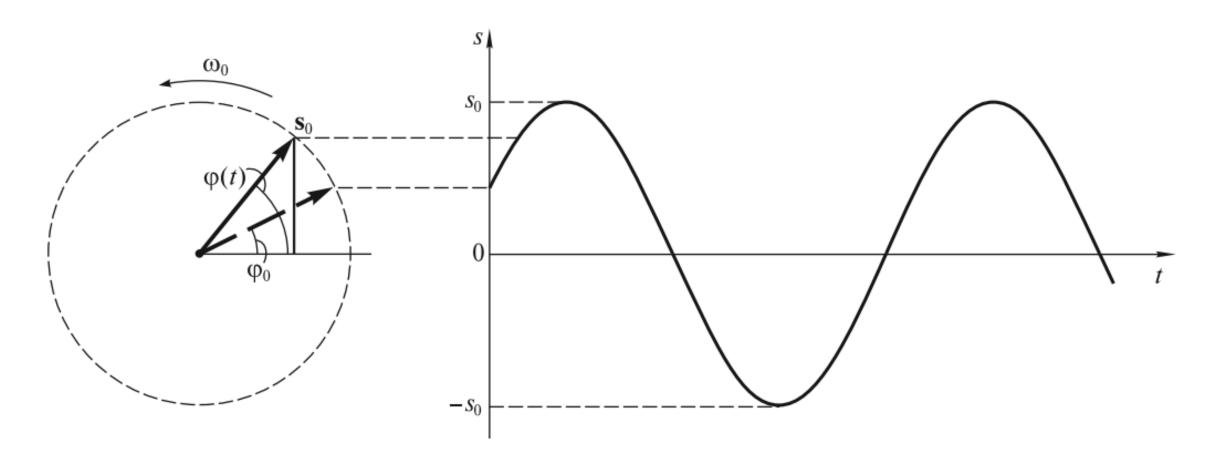
Выберем лабораторную инерциальную систему отсчета, связанную с телом, к которому подвешен математический маятник.

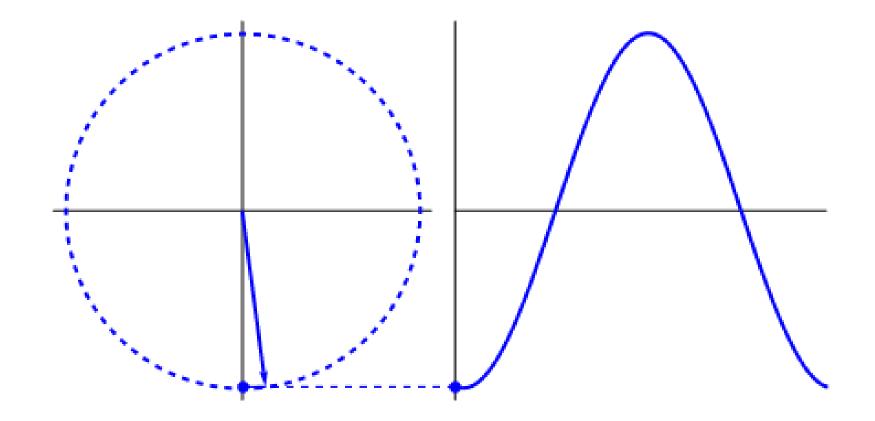
$$E_{k} = \frac{ml^{2}\dot{\alpha}^{2}}{2} = \frac{mglA^{2}}{2}\sin^{2}(\omega_{0}t + \varphi_{0})$$

$$E_{p} = mgl(1 - \cos\alpha) = \frac{mglA^{2}}{2}\cos^{2}(\omega_{0}t + \varphi_{0})$$

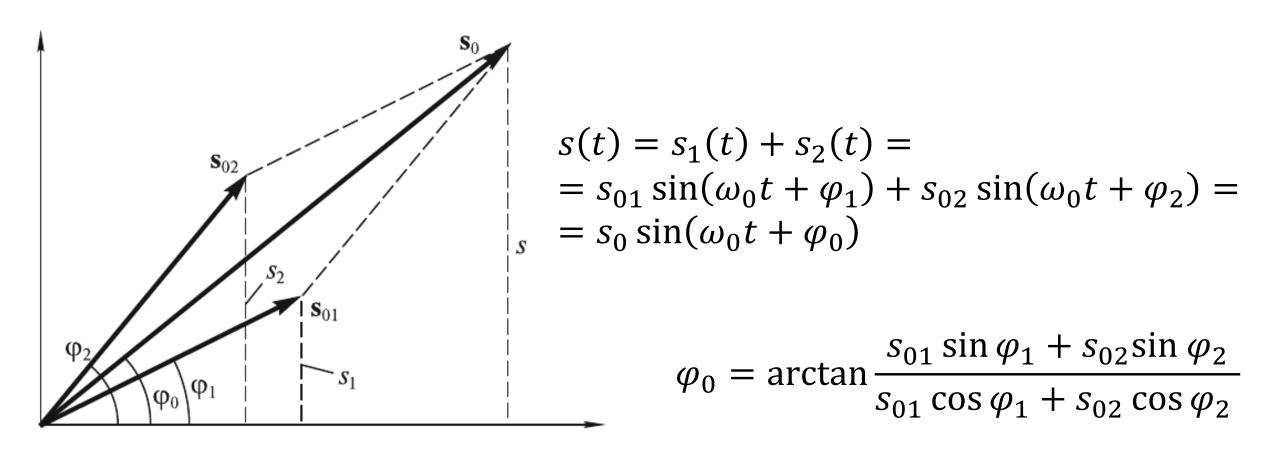
Метод векторных диаграмм

Гармонические колебания можно изобразить графически в виде вращающегося на плоскости вектора амплитуды.





Гармонические колебания можно изобразить графически в виде вращающегося на плоскости вектора амплитуды.



$$s_0 = \sqrt{(s_{01}\cos\varphi_1 + s_{02}\cos\varphi_2)^2 + (s_{01}\sin\varphi_1 + s_{02}\sin\varphi_2)^2}$$

Сложение взаимно перпендикулярных колебаний

Пусть колебания маятника происходят в двух взаимно

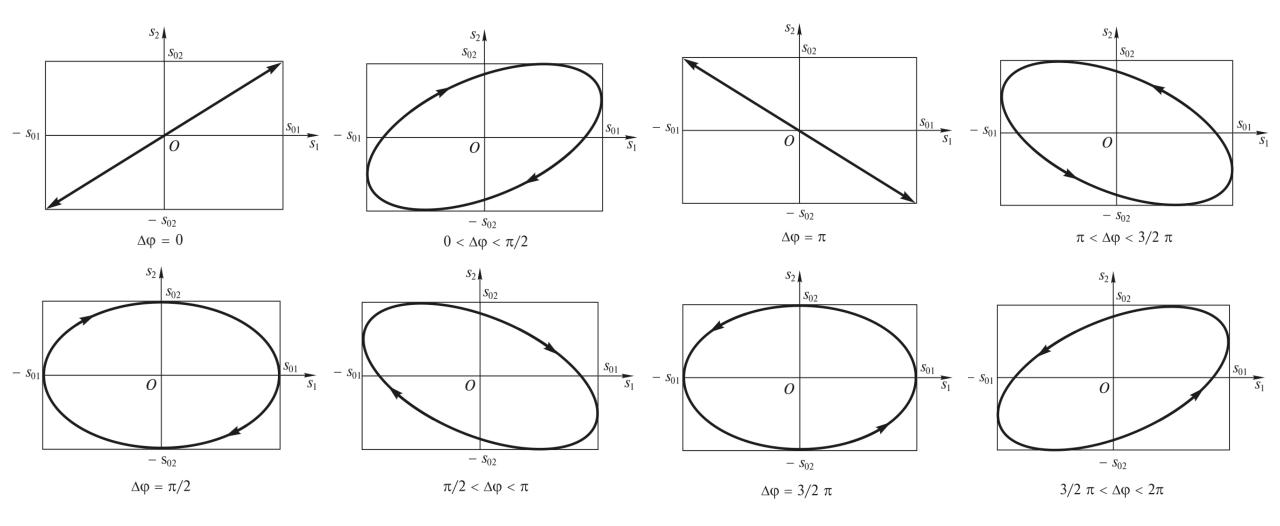
перпендикулярных направлениях.

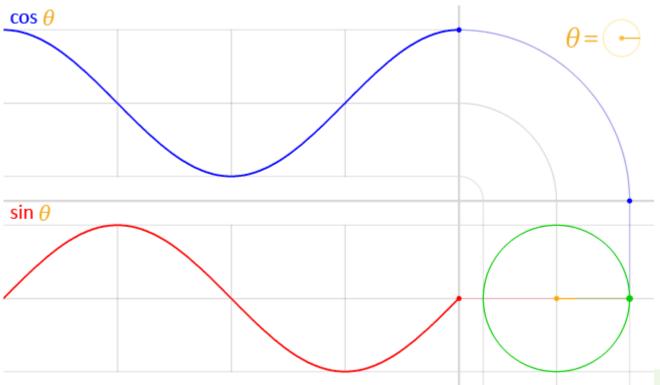
$$x_1 = x_{01}\cos(\omega_1 t + \varphi_1)$$

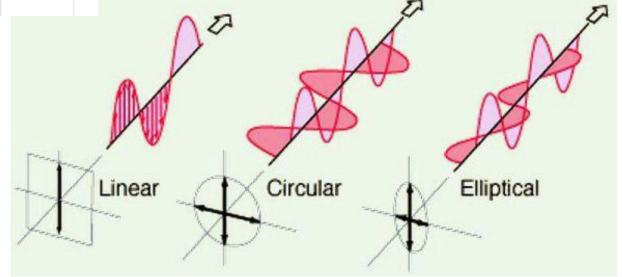
$$x_2 = x_{02}\cos(\omega_2 t + \varphi_2)$$

Если частоты равны, $\omega_1 = \omega_2$, то уравнение траектории тела маятника будет иметь вид эллипса:

$$\left(\frac{x_1}{x_{01}}\right)^2 + \left(\frac{x_2}{x_{02}}\right)^2 - 2\frac{x_1}{x_{01}}\frac{x_2}{x_{02}}\cos(\varphi_2 - \varphi_1) = \sin^2(\varphi_2 - \varphi_1)$$





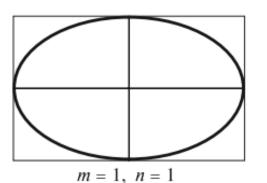


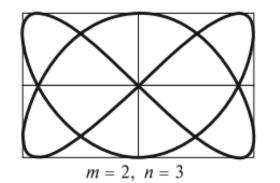
Фигуры Лиссажу

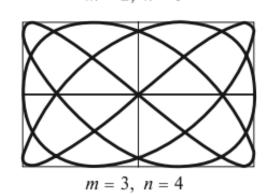
Если ω_1 и ω_2 не совпадают, но являются кратными,

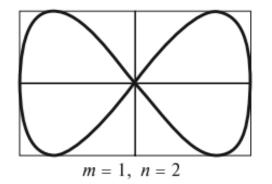
$$m\omega_1 = n\omega_2$$

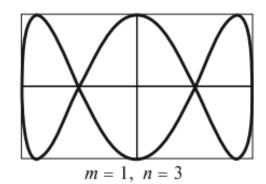
то траектории также являются замкнутыми кривыми, называемыми фигурами Лиссажу.

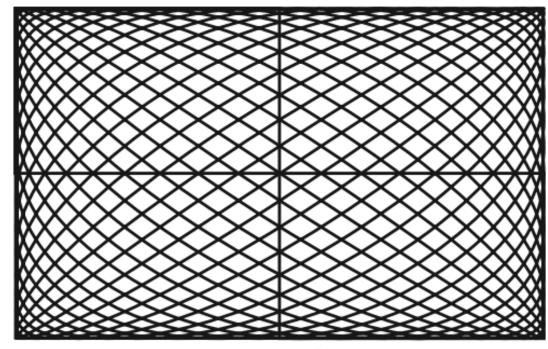


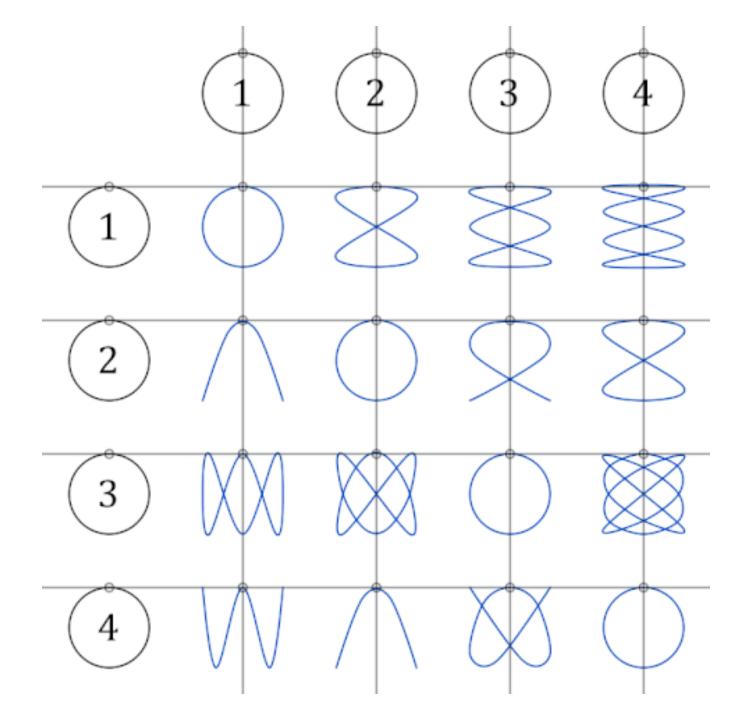




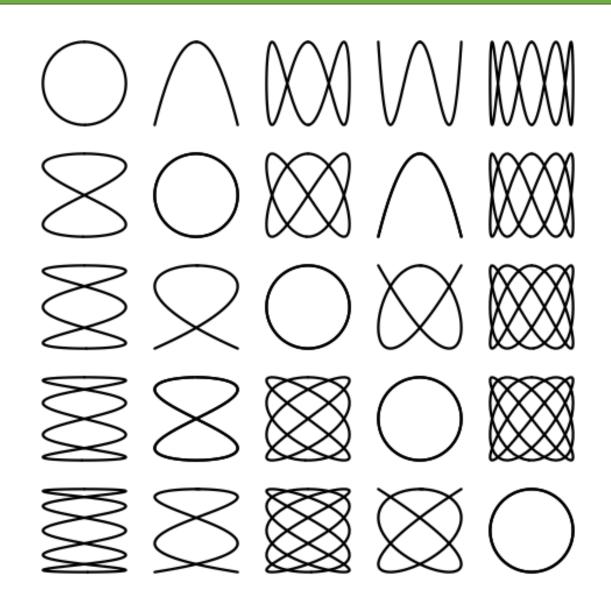




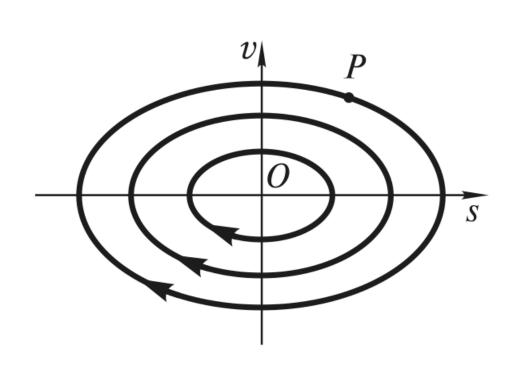


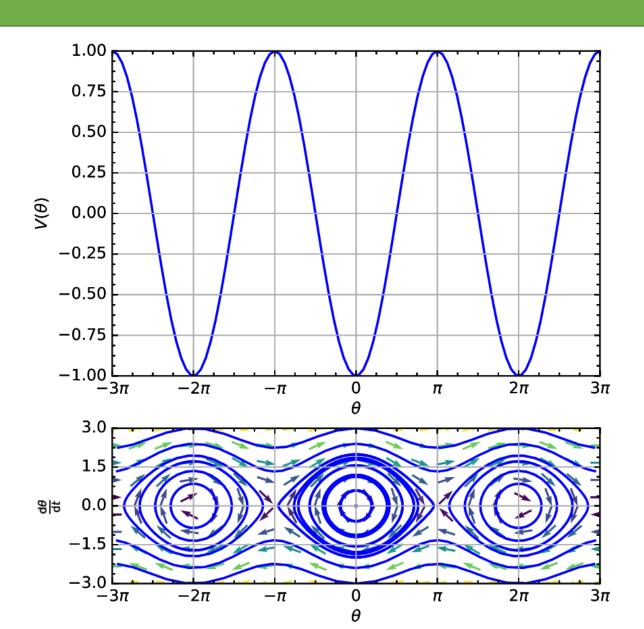


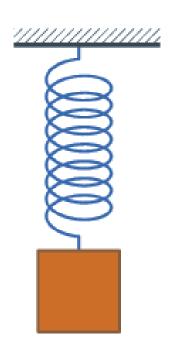
Фигуры Лиссажу при переменной фазе



Фазовый анализ







Рассмотрим на примере пружинного маятника основные закономерности свободных колебаний при наличии силы трения.

Наиболее простое решение уравнение движение имеет в том случае, когда сила трения пропорциональна скорости. Такая ситуация реализуется для вязкого трения при малых скоростях, когда сила трения направлена против направления вектора скорости, а ее величина пропорциональна первой степени скорости.

Уравнение движения пружинного маятника при наличии силы трения имеет вид: $m\ddot{x} + \eta \dot{x} + \omega_0^2 x = 0$

где η — коэффициент вязкого трения, зависящий от размеров и формы тела, свойств его поверхности и среды, в которой происходит движение.

В нормированном виде уравнение затухающих колебаний имеет вид:

$$\ddot{x} + 2\delta\dot{x} + \omega_0^2 x = 0$$

где
$$\delta = \frac{\eta}{2m}$$
 и $\omega_0^2 = \frac{k}{m}$.

Решение этого уравнения при $\delta < \omega_0$: $x(t) = A_0 e^{-\delta t} \cos(\omega t + \varphi)$

При $\delta < \omega_0$:

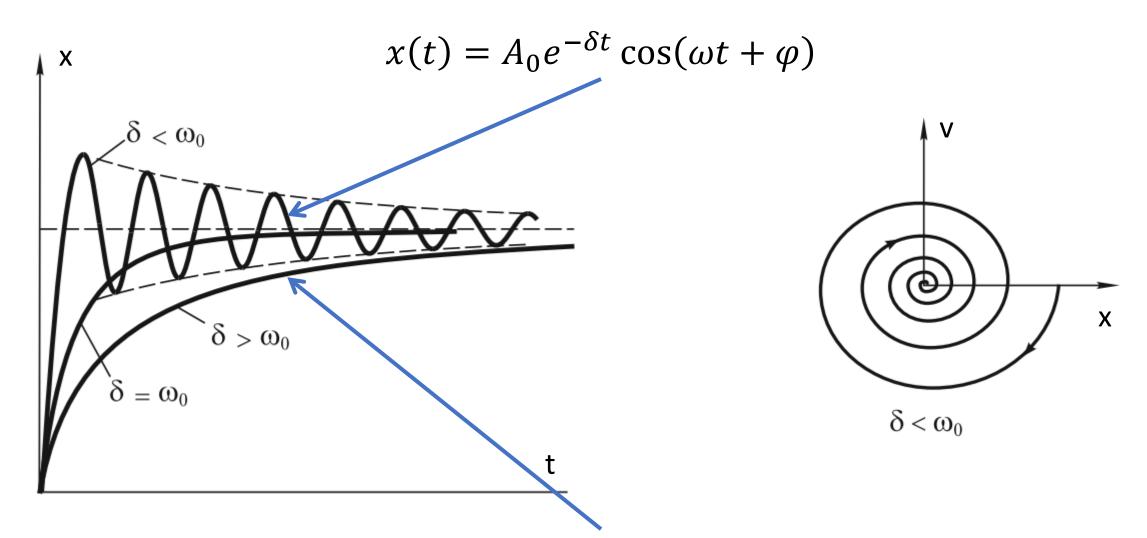
$$x(t) = A_0 e^{-\delta t} \cos(\omega t + \varphi), \qquad \omega = \sqrt{\omega_0^2 - \delta^2}$$

При $\delta = \omega_0$:

$$x(t) = (A_1 + A_2 t)e^{-\delta t}$$

При $\delta > \omega_0$:

$$x(t) = A_1 e^{-\left(\delta + \sqrt{\delta^2 - \omega_0^2}\right)t} + A_2 e^{-\left(\delta - \sqrt{\delta^2 - \omega_0^2}\right)t}$$



Случай апериодического движения – с затуханием больше критического ($\delta > \omega_0$).

Коэффициент затухания. Время релаксации

$$x(t) = A_0 e^{-\delta t} \cos(\omega t + \varphi)$$

- δ коэффициент затухания.
- τ время затухания интервал времени, за которое амплитуда колебаний уменьшится в e раз (e=2.71828).

$$\tau = \frac{1}{\delta}$$

• Угловая частота и период затухающих колебаний.

$$\omega = \sqrt{\omega_0^2 - \delta^2} \qquad \qquad T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - \delta^2}}$$

Добротность колебательной системы

• θ – логарифмический декремент затухания

$$\theta = \ln \frac{A(t)}{A(t+T)} = \delta T$$

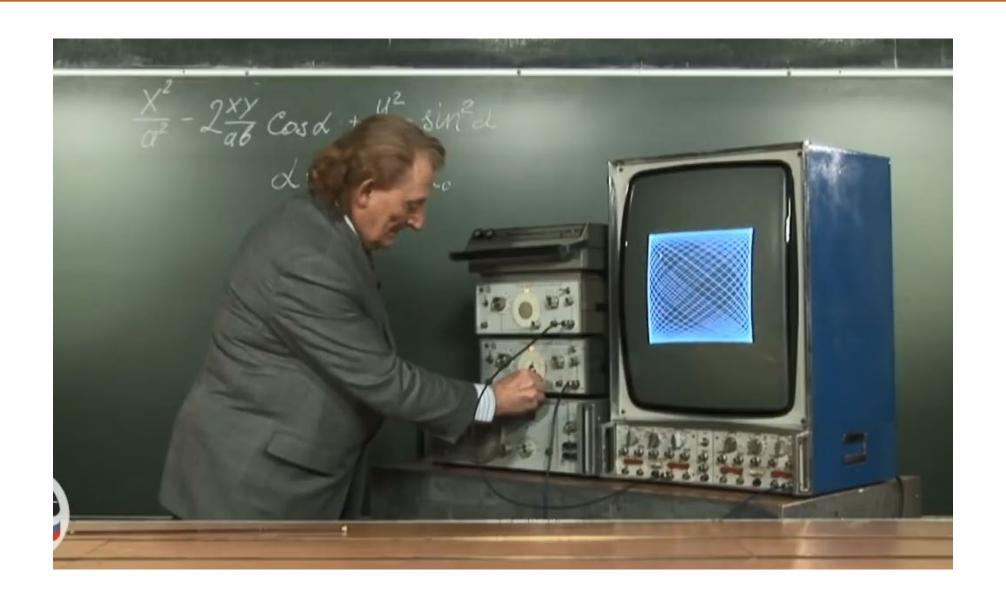
• Q — **добротность** колебательной системы

$$Q = 2\pi \frac{E(t)}{\Delta E_T} = \frac{2\pi}{1 - e^{-2\delta T}}$$

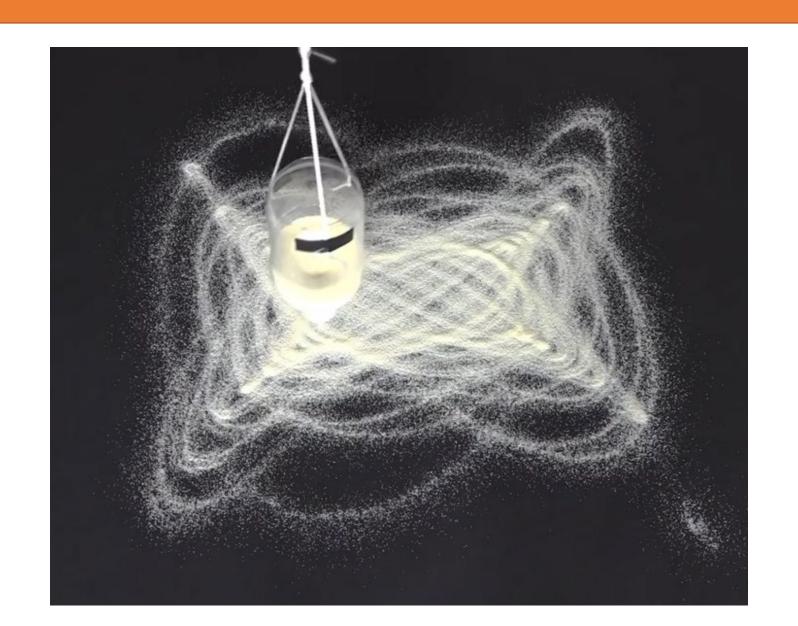
Если
$$\delta T = \frac{1}{N} \ll 1$$
 , то $Q = \frac{\pi}{\theta} = \pi \mathrm{N}$

Физический маятник

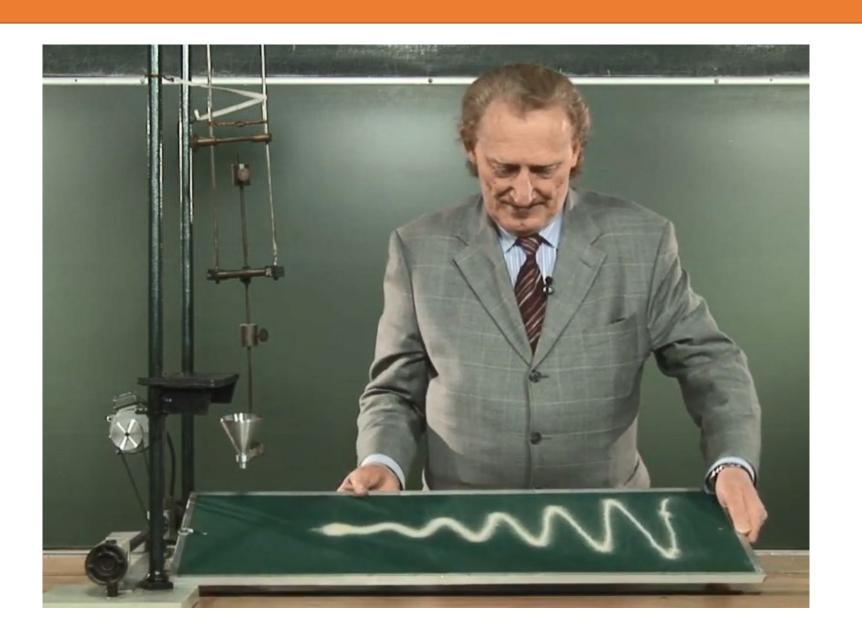
Фигуры Лиссажу на осциллографе



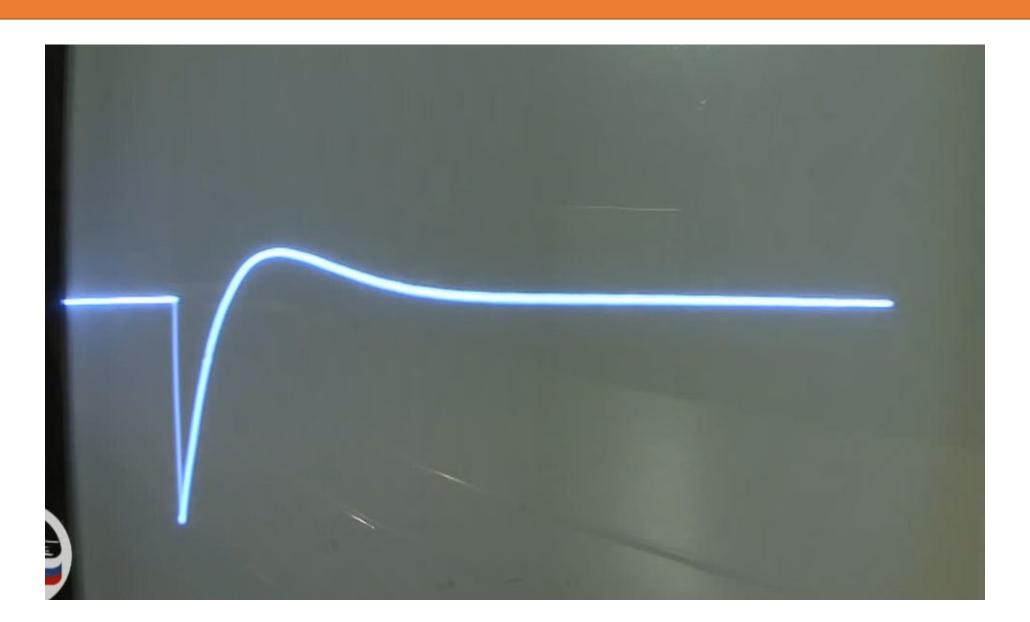
Фигуры Лиссажу песком



Затухающие колебания маятника



Затухающие колебания маятника



Фазовые кривые

