\(\renewcommand{\AA}{\text{Å}}\)

Bibliography

(Ackland)

Ackland, Jones, Phys Rev B, 73, 054104 (2006).

(Ackland1)

Ackland, Condensed Matter (2005).

(Ackland2)

Ackland, Mendelev, Srolovitz, Han and Barashev, Journal of Physics: Condensed Matter, 16, S2629 (2004).

(Addington)

Addington, Long, Gubbins, J Chem Phys, 149, 084109 (2018).

(Adhikari et al.)

Adhikari, R., Stratford, K., Cates, M. E., and Wagner, A. J., Fluctuating lattice Boltzmann, Europhys. Lett. 71 (2005) 473-479.

(Afshar)

Afshar, F. Schmid, A. Pishevar, S. Worley, Comput Phys Comm, 184, 1119-1128 (2013).

(Agnolin and Roux 2007)

Agnolin, I. & Roux, J-N. (2007). Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E, 76, 061302.

(Aktulga)

Aktulga, Fogarty, Pandit, Grama, Parallel Computing, 38, 245-259 (2012).

(Albe)

J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter, 15, 5649(2003).

(Albe)

K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Phys. Rev. B, 66, 035205 (2002).

(Allen)

Allen and Germano, Mol Phys 104, 3225-3235 (2006).

(Allen)

Allen and Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

(AllenTildesley)

Allen and Tildesley, Computer Simulation of Liquids, Oxford University Press (1987)

(Allinger)

Allinger, Yuh, Lii, JACS, 111(23), 8551-8566 (1989),

(Andersen)

H. Andersen, J of Comp Phys, 52, 24-34 (1983).

(Anderson)

Anderson, Mukherjee, Critchley, Ziegler, and Lipton “POEMS: Parallelizable Open-source Efficient Multibody Software “, Engineering With Computers (2006).

(Avendano)

C. Avendano, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, E. Muller, J Phys Chem B, 115, 11154 (2011).

(Axilrod)

Axilrod and Teller, J Chem Phys, 11, 299 (1943); Muto, Nippon Sugaku-Buturigakkwaishi 17, 629 (1943).

(Babadi)

Babadi, Ejtehadi, Everaers, J Comp Phys, 219, 770-779 (2006).

(Babadi)

Babadi and Ejtehadi, EPL, 77 (2007) 23002.

(Baczewski)

A.D. Baczewski and S.D. Bond, J. Chem. Phys. 139, 044107 (2013).

(Bal)

K. M Bal and E. C. Neyts, J. Chem. Phys. 141, 204104 (2014).

(Ball)

Ball and Melrose, Physica A, 247, 444-472 (1997).

(Ballenegger)

Ballenegger, Arnold, Cerda, J Chem Phys, 131, 094107 (2009).

(Banna)

Volkov, Banna, Comp. Mater. Sci. 176, 109410 (2020).

(Barrat)

Barrat and Rodney, J. Stat. Phys, 144, 679 (2011).

(Barrett)

Barrett, Tschopp, El Kadiri, Scripta Mat. 66, p.666 (2012).

(Bartok)

Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).

(Bartok2010)

Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).

(Bartok_2010)

AP Bartok, MC Payne, R Kondor, and G Csanyi, Physical Review Letters 104, 136403 (2010).

(Bartok_PhD)

A Bartok-Partay, PhD Thesis, University of Cambridge, (2010).

(Baskes)

Baskes, Phys Rev B, 46, 2727-2742 (1992).

(Beck)

Beck, Molecular Physics, 14, 311 (1968).

(Bennet)

Bennet, J Comput Phys, 22, 245 (1976)

(Berardi)

Berardi, Fava, Zannoni, Chem Phys Lett, 297, 8-14 (1998). Berardi, Muccioli, Zannoni, J Chem Phys, 128, 024905 (2008).

(Berendsen)

Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Berendsen)

Berendsen, Postma, van Gunsteren, DiNola, Haak, J Chem Phys, 81, 3684 (1984).

(Bessarab)

Bessarab, Uzdin, Jonsson, Comp Phys Comm, 196, 335-347 (2015).

(Beutler)

Beutler, Mark, van Schaik, Gerber, van Gunsteren, Chem Phys Lett, 222, 529 (1994).

(Bialke)

J. Bialke, T. Speck, and H Loewen, Phys. Rev. Lett. 108, 168301, 2012.

(Bird)

G. A. Bird, “Molecular Gas Dynamics and the Direct Simulation of Gas Flows” (1994).

(Bitzek)

Bitzek, Koskinen, Gahler, Moseler, Gumbsch, Phys Rev Lett, 97, 170201 (2006).

(Bond)

Bond and Leimkuhler, SIAM J Sci Comput, 30, p 134 (2007).

(Boone)

Boone, Babaei, Wilmer, J Chem Theory Comput, 15, 5579–5587 (2019).

(BoreschKarplus)

Boresch and Karplus, J Phys Chem A, 103, 103 (1999)

(Botu1)

V. Botu and R. Ramprasad, Int. J. Quant. Chem., 115(16), 1074 (2015).

(Botu2)

V. Botu and R. Ramprasad, Phys. Rev. B, 92(9), 094306 (2015).

(Botu3)

V. Botu, R. Batra, J. Chapman and R. Ramprasad, https://arxiv.org/abs/1610.02098 (2016).

(Branicio2009)

Branicio, Rino, Gan and Tsuzuki, J. Phys Condensed Matter 21 (2009) 095002

(Brennan)

Brennan, J Chem Phys Lett, 5, 2144-2149 (2014).

(Brenner)

Brenner, Shenderova, Harrison, Stuart, Ni, Sinnott, J Physics: Condensed Matter, 14, 783-802 (2002).

(Brilliantov)

Brilliantov, Spahn, Hertzsch, Poschel, Phys Rev E, 53, p 5382-5392 (1996).

(Brooks)

Brooks, Brooks, MacKerell Jr., J Comput Chem, 30, 1545 (2009).

(Brooks)

Brooks, et al, J Comput Chem, 30, 1545 (2009).

(Brown)

Brown et al. International Tables for Crystallography Volume C: Mathematical and Chemical Tables, 554-95 (2004).

(Buck)

Buck, Bouguet-Bonnet, Pastor, MacKerell Jr., Biophys J, 90, L36 (2006).

(Bussi)

G. Bussi, M. Parrinello, Phs. Rev. E 75, 056707 (2007)

(Bussi1)

Bussi, Donadio and Parrinello, J. Chem. Phys. 126, 014101(2007)

(Bussi2)

Bussi and Parrinello, Phys. Rev. E 75, 056707 (2007)

(COMB)

T.-R. Shan, B. D. Devine, T. W. Kemper, S. B. Sinnott, and S. R. Phillpot, Phys. Rev. B 81, 125328 (2010)

(COMB3)

T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R. Phillpot, and S. B. Sinnott, Mat. Sci. & Eng: R 74, 255-279 (2013).

(COMB_1)

J. Yu, S. B. Sinnott, S. R. Phillpot, Phys Rev B, 75, 085311 (2007),

(Calhoun)

A. Calhoun, M. Pavese, G. Voth, Chem Phys Letters, 262, 415 (1996).

(Campana)

C. Campana and M. H. Muser, Practical Green’s function approach to the simulation of elastic semi-infinite solids, Phys. Rev. B [74], 075420 (2006)

(Cao1)

J. Cao and B. Berne, J Chem Phys, 99, 2902 (1993).

(Cao2)

J. Cao and G. Voth, J Chem Phys, 100, 5093 (1994).

(Caro)

A Caro, DA Crowson, M Caro; Phys Rev Lett, 95, 075702 (2005)

(CasP)

CasP webpage: http://www.casp-program.org/

(Cawkwell2012)

A. M. N. Niklasson, M. J. Cawkwell, Phys. Rev. B, 86 (17), 174308 (2012).

(Cercignani)

C. Cercignani and M. Lampis. Trans. Theory Stat. Phys. 1, 2, 101 (1971).

(Cerda)

Cerda, Ballenegger, Lenz, Holm, J Chem Phys 129, 234104 (2008)

(Ceriotti)

Ceriotti, Bussi and Parrinello, J Chem Theory Comput 6, 1170-80 (2010)

(Ceriotti2)

Ceriotti, Bussi and Parrinello, Phys Rev Lett 103, 030603 (2009)

(Cerutti)

Cerutti, Duke, Darden, Lybrand, Journal of Chemical Theory and Computation 5, 2322 (2009)

(Chen)

J Chen, D Tzou and J Beraun, Int. J. Heat Mass Transfer, 49, 307-316 (2006).

(Chenoweth_2008)

Chenoweth, van Duin and Goddard, Journal of Physical Chemistry A, 112, 1040-1053 (2008).

(Clarke)

Clarke and Smith, J Chem Phys, 84, 2290 (1986).

(Coleman)

Coleman, Spearot, Capolungo, MSMSE, 21, 055020 (2013).

(Colliex)

Colliex et al. International Tables for Crystallography Volume C: Mathematical and Chemical Tables, 249-429 (2004).

(Cooke)

“Cooke, Kremer and Deserno, Phys. Rev. E, 72, 011506 (2005)”

(Cornell)

Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117, 5179-5197 (1995).

(Cusentino)

Cusentino, Wood, and Thompson, J Phys Chem A, xxx, xxxxx, (2020)

(Daivis and Todd)

Daivis and Todd, J Chem Phys, 124, 194103 (2006).

(Daivis and Todd)

Daivis and Todd, Nonequilibrium Molecular Dynamics (book), Cambridge University Press, https://doi.org/10.1017/9781139017848, (2017).

(Dammak)

Dammak, Chalopin, Laroche, Hayoun, and Greffet, Phys Rev Lett, 103, 190601 (2009).

(Darden)

Darden, York, Pedersen, J Chem Phys, 98, 10089 (1993).

(Davidchack)

R.L Davidchack, T.E. Ouldridge, and M.V. Tretyakov. J. Chem. Phys. 142, 144114 (2015).

(Daw1)

Daw, Baskes, Phys Rev Lett, 50, 1285 (1983). Daw, Baskes, Phys Rev B, 29, 6443 (1984).

(Daw2)

M. S. Daw, and M. I. Baskes, Phys. Rev. B, 29, 6443 (1984).

(DeVane)

Shinoda, DeVane, Klein, Soft Matter, 4, 2453-2462 (2008).

(Deserno)

Deserno and Holm, J Chem Phys, 109, 7694 (1998).

(Destree)

M. Destree, F. Laupretre, A. Lyulin, and J.-P. Ryckaert, J Chem Phys, 112, 9632 (2000).

(Dobson)

Dobson, J Chem Phys, 141, 184103 (2014).

(Duffy)

D M Duffy and A M Rutherford, J. Phys.: Condens. Matter, 19, 016207-016218 (2007).

(Dullweber)

Dullweber, Leimkuhler and McLachlan, J Chem Phys, 107, 5840 (1997).

(Dunn1)

Dunn and Noid, J Chem Phys, 143, 243148 (2015).

(Dunn2)

Dunn, Lebold, DeLyser, Rudzinski, and Noid, J. Phys. Chem. B, 122, 3363 (2018).

(Dunweg)

Dunweg and Paul, Int J of Modern Physics C, 2, 817-27 (1991).

(EDIP)

J F Justo et al, Phys Rev B 58, 2539 (1998).

(Eike)

Eike and Maginn, Journal of Chemical Physics, 124, 164503 (2006).

(Elliott)

Elliott, Tadmor and Bernstein, https://openkim.org/kim-api (2011) doi: https://doi.org/10.25950/FF8F563A

(Elstner)

M. Elstner, D. Poresag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B, 58, 7260 (1998).

(Erdmann)

U. Erdmann , W. Ebeling, L. Schimansky-Geier, and F. Schweitzer, Eur. Phys. J. B 15, 105-113, 2000.

(Espanol and Revenga)

Espanol, Revenga, Physical Review E, 67, 026705 (2003).

(Espanol1997)

Espanol, Europhys Lett, 40(6): 631-636 (1997). DOI:10.1209/epl/i1997-00515-8

(Evans and Morriss)

Evans and Morriss, Phys Rev A, 30, 1528 (1984).

(Evans)

Evans and Morriss, Phys. Rev. Lett. 56, 2172 (1986).

(Everaers)

Everaers and Ejtehadi, Phys Rev E, 67, 041710 (2003).

(Faken)

Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Fath)

Fath, Hochbruck, Singh, J Comp Phys, 333, 180-198 (2017).

(Fennell)

C. J. Fennell, J. D. Gezelter, J Chem Phys, 124, 234104 (2006).

(Feynman)

R. Feynman and A. Hibbs, Chapter 7, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).

(Fichthorn)

Fichthorn, Balankura, Qi, CrystEngComm, 18(29), 5410-5417 (2016).

(Fily)

Y. Fily and M.C. Marchetti, Phys. Rev. Lett. 108, 235702, 2012. Default

(Fincham)

Fincham, Mackrodt and Mitchell, J Phys Condensed Matter, 6, 393-404 (1994).

(Finnis1)

Finnis, Sinclair, Philosophical Magazine A, 50, 45 (1984).

(Finnis2)

M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgarde, Phys. Rev. Lett., 81, 5149 (1998).

(Fiorin)

Fiorin, Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594

(Fox)

Fox, O’Keefe, Tabbernor, Acta Crystallogr. A, 45, 786-93 (1989).

(Fraige)

F. Y. Fraige, P. A. Langston, A. J. Matchett, J. Dodds, Particuology, 6, 455 (2008).

(Freitas)

Freitas, Asta, and de Koning, Computational Materials Science, 112, 333 (2016).

(Frenkel)

Frenkel and Smit, Understanding Molecular Simulation, Academic Press, London, 2002.

(GLE4MD)

https://gle4md.org/

(Gao)

Gao and Weber, Nuclear Instruments and Methods in Physics Research B 191 (2012) 504.

(Gissinger)

Gissinger, Jensen and Wise, Polymer, 128, 211 (2017).

(Glosli)

Glosli, unpublished, 2005. Streitz, Glosli, Patel, Chan, Yates, de Supinski, Sexton and Gunnels, Journal of Physics: Conference Series, 46, 254 (2006).

(Goldman1)

Goldman, Reed and Fried, J. Chem. Phys. 131, 204103 (2009)

(Goldman2)

Goldman, Srinivasan, Hamel, Fried, Gaus, and Elstner, J. Phys. Chem. C, 117, 7885 (2013).

(Grime)

Grime and Voth, to appear in J Chem Theory & Computation (2014).

(Grimme)

Grimme, J Comput Chem, 27(15), 1787-1799 (2006).

(Gronbech-Jensen1)

Gronbech Jensen and Gronbech-Jensen, Mol Phys, 117, 2511 (2019)

(Gronbech-Jensen2)

Gronbech-Jensen and Farago, Mol Phys, 111, 983 (2013)

(Gronbech-Jensen3)

Hayre, and Farago, Comp Phys Comm, 185, 524 (2014)

(Groot)

Groot and Warren, J Chem Phys, 107: 4423-4435 (1997). DOI:10.1063/1.474784

(Guenole)

Guenole, Noehring, Vaid, Houlle, Xie, Prakash, Bitzek, Comput Mater Sci, 175, 109584 (2020).

(Gullet)

Gullet, Wagner, Slepoy, SANDIA Report 2003-8782 (2003). DOI:10.2172/918395

(Guo)

Guo and Thirumalai, Journal of Molecular Biology, 263, 323-43 (1996).

(Hardy)

David Hardy thesis: Multilevel Summation for the Fast Evaluation of Forces for the Simulation of Biomolecules, University of Illinois at Urbana-Champaign, (2006).

(Hardy2)

Hardy, Stone, Schulten, Parallel Computing, 35, 164-177 (2009).

(Hecht)

Hecht, Harting, Ihle, Herrmann, Phys Rev E, 72, 011408 (2005).

(Henkelman1)

Henkelman and Jonsson, J Chem Phys, 113, 9978-9985 (2000).

(Henkelman2)

Henkelman, Uberuaga, Jonsson, J Chem Phys, 113, 9901-9904 (2000).

(Henkes)

Henkes, S, Fily, Y., and Marchetti, M. C. Phys. Rev. E, 84, 040301(R), 2011.

(Henrich)

O. Henrich, Y. A. Gutierrez-Fosado, T. Curk, T. E. Ouldridge, Eur. Phys. J. E 41, 57 (2018).

(Hess)

Hess, B. The Journal of Chemical Physics 2002, 116 (1), 209-217.

(Heyes)

Heyes, Phys Rev B, 49, 755 (1994).

(Hijazi)

M. Hijazi, D. M. Wilkins, M. Ceriotti, J. Chem. Phys. 148, 184109 (2018)

(Hockney)

Hockney and Eastwood, Computer Simulation Using Particles, Adam Hilger, NY (1989).

(Holian)

Holian and Ravelo, Phys Rev B, 51, 11275 (1995).

(Hone)

T. Hone, P. Rossky, G. Voth, J Chem Phys, 124, 154103 (2006).

(Hoover)

Hoover, Phys Rev A, 31, 1695 (1985).

(Hummer)

Hummer, Gronbech-Jensen, Neumann, J Chem Phys, 109, 2791 (1998)

(Hunt)

Hunt, Mol Simul, 42, 347 (2016).

(IPI)

https://ipi-code.org/ <https://ipi-code.org/>

(IPI-CPC)

Ceriotti, More and Manolopoulos, Comp Phys Comm, 185, 1019-1026 (2014).

(Ikeshoji)

Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(In ‘t Veld)

In ‘t Veld, Ismail, Grest, J Chem Phys (accepted) (2007).

(Isele-Holder)

Isele-Holder, Mitchell, Ismail, J Chem Phys, 137, 174107 (2012).

(Isele-Holder2)

Isele-Holder, Mitchell, Hammond, Kohlmeyer, Ismail, J Chem Theory Comput 9, 5412 (2013).

(Ismail)

Ismail, Tsige, In ‘t Veld, Grest, Molecular Physics (accepted) (2007).

(Ivanov)

Ivanov, Uzdin, Jonsson. arXiv preprint arXiv:1904.02669, (2019).

(Izrailev)

Izrailev, Stepaniants, Isralewitz, Kosztin, Lu, Molnar, Wriggers, Schulten. Computational Molecular Dynamics: Challenges, Methods, Ideas, volume 4 of Lecture Notes in Computational Science and

(Izvekov)

Izvekov, Voth, J Chem Phys 123, 134105 (2005).

(Janssens)

Janssens, Olmsted, Holm, Foiles, Plimpton, Derlet, Nature Materials, 5, 124-127 (2006).

(Jaramillo-Botero)

Jaramillo-Botero, Su, Qi, Goddard, Large-scale, Long-term Non-adiabatic Electron Molecular Dynamics for Describing Material Properties and Phenomena in Extreme Environments, J Comp

(Jarzynski)

Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

(Jiang)

Jiang, Hardy, Phillips, MacKerell, Schulten, and Roux, J Phys Chem Lett, 2, 87-92 (2011).

(Johnson et al, 1971)

Johnson, K. L., Kendall, K., & Roberts, A. D. (1971). Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A, 324(1558), 301-313.

(Jones)

Jones, RE; Templeton, JA; Wagner, GJ; Olmsted, D; Modine, JA, “Electron transport enhanced molecular dynamics for metals and semi-metals.” International Journal for Numerical Methods in Engineering (2010), 83:940.

(Jonsson)

Jonsson, Mills and Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne, Ciccotti, and Coker World Scientific, Singapore, 1998, p 385.

(Jorgensen)

Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Jusufi)

Jusufi, Hynninen, and Panagiotopoulos, J Phys Chem B, 112, 13783 (2008).

(Kamberaj)

Kamberaj, Low, Neal, J Chem Phys, 122, 224114 (2005).

(Katsura)

H. Katsura, N. Nagaosa, A.V. Balatsky. Phys. Rev. Lett., 95(5), 057205. (2005)

(Kelchner)

Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

(Khrapak)

Khrapak, Chaudhuri, and Morfill, J Chem Phys, 134, 054120 (2011).

(Kim)

Kim, Keyes, Straub, J Chem. Phys, 132, 224107 (2010).

(Klapp)

Klapp, Schoen, J Chem Phys, 117, 8050 (2002).

(Kolafa)

Kolafa and Perram, Molecular Simulation, 9, 351 (1992).

(Kolmogorov)

A. N. Kolmogorov, V. H. Crespi, Phys. Rev. B 71, 235415 (2005).

(Kong)

L.T. Kong, G. Bartels, C. Campana, C. Denniston, and Martin H. Muser, Computer Physics Communications [180](6):1004-1010 (2009).

(Kong2011)

L.T. Kong, Computer Physics Communications [182](10):2201-2207, (2011).

(Kremer)

Kremer, Grest, J Chem Phys, 92, 5057 (1990).

(Kuhn and Bagi, 2005)

Kuhn, M. R., & Bagi, K. (2004). Contact rolling and deformation in granular media. International journal of solids and structures, 41(21), 5793-5820.

(Kumagai)

T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comp. Mat. Science, 39, 457 (2007).

(Kumar)

Kumar and Higdon, Phys Rev E, 82, 051401 (2010).

(Kumar)

Kumar and Skinner, J. Phys. Chem. B, 112, 8311 (2008)

(Lamoureux and Roux)

G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

(Lamoureux)

Lamoureux and Roux, J Chem Phys, 119, 3025-3039 (2003).

(Larentzos)

J.P. Larentzos, J.K. Brennan, J.D. Moore, and W.D. Mattson, “LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)”, ARL-TR-6863, U.S. Army Research

(Larentzos1)

J.P. Larentzos, J.K. Brennan, J.D. Moore, M. Lisal and W.D. Mattson, “Parallel Implementation of Isothermal and Isoenergetic Dissipative Particle Dynamics Using Shardlow-Like Splitting

(Larentzos2)

J.P. Larentzos, J.K. Brennan, J.D. Moore, and W.D. Mattson, “LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)”, ARL-TR-6863, U.S. Army Research

(Larsen)

Larsen, Schmidt, Schiotz, Modelling Simul Mater Sci Eng, 24, 055007 (2016).

(Lebedeva et al.)

I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, Y. E. Lozovik, B. V. Potapkin, Phys. Rev. B, 84, 245437 (2011)

(Lechman)

Lechman, et al, in preparation (2010).

(Lee)

Lee, Baskes, Phys. Rev. B, 62, 8564-8567 (2000).

(Lee2)

Lee, Baskes, Kim, Cho. Phys. Rev. B, 64, 184102 (2001).

(Lenart)

Lenart , Jusufi, and Panagiotopoulos, J Chem Phys, 126, 044509 (2007).

(Lenosky)

Lenosky, Sadigh, Alonso, Bulatov, de la Rubia, Kim, Voter, Kress, Modelling Simulation Materials Science Engineering, 8, 825 (2000).

(Leven1)

I. Leven, I. Azuri, L. Kronik and O. Hod, J. Chem. Phys. 140, 104106 (2014).

(Leven2)

I. Leven et al, J. Chem.Theory Comput. 12, 2896-905 (2016).

(Li2013_POF)

Li, Hu, Wang, Ma, Zhou, Phys Fluids, 25: 072103 (2013). DOI:10.1063/1.4812366.

(Li2014_JCP)

Li, Tang, Lei, Caswell, Karniadakis, J Comput Phys, 265: 113-127 (2014). DOI:10.1016/j.jcp.2014.02.003.

(Li2015_CC)

Li, Tang, Li, Karniadakis, Chem Commun, 51: 11038-11040 (2015). DOI:10.1039/C5CC01684C.

(Li2015_JCP)

Li, Yazdani, Tartakovsky, Karniadakis, J Chem Phys, 143: 014101 (2015). DOI:10.1063/1.4923254.

(Lisal)

M. Lisal, J.K. Brennan, J. Bonet Avalos, “Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic conditions using Shardlow-like splitting algorithms.”,

(Liu1)

L. Liu, Y. Liu, S. V. Zybin, H. Sun and W. A. Goddard, Journal of Physical Chemistry A, 115, 11016-11022 (2011).

(Liu2)

Liu, Bryantsev, Diallo, Goddard III, J. Am. Chem. Soc 131 (8) 2798 (2009)

(Los and Fasolino)

J. H. Los and A. Fasolino, Phys. Rev. B 68, 024107 (2003).

(Los2017)

J. H. Los et al. “Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN”, Phys. Rev. B 96 (184108), 2017.

(Luding, 2008)

Luding, S. (2008). Cohesive, frictional powders: contact models for tension. Granular matter, 10(4), 235.

(Maaravi)

T. Maaravi et al, J. Phys. Chem. C 121, 22826-22835 (2017).

(MacKerell)

MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys Chem B, 102, 3586 (1998).

(Mackay and Denniston)

Mackay, F. E., and Denniston, C., Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces, J. Comput. Phys. 237 (2013) 289-298.

(Mackay et al.)

Mackay, F. E., Ollila, S.T.T., and Denniston, C., Hydrodynamic Forces Implemented into LAMMPS through a lattice-Boltzmann fluid, Computer Physics Communications 184 (2013) 2021-2031.

(Magda)

Magda, Tirrell, Davis, J Chem Phys, 83, 1888-1901 (1985); erratum in JCP 84, 2901 (1986).

(Maginn)

Kelkar, Rafferty, Maginn, Siepmann, Fluid Phase Equilibria, 260, 218-231 (2007).

(Malolepsza)

Malolepsza, Secor, Keyes, J Phys Chem B 119 (42), 13379-13384 (2015).

(Mandadapu)

Mandadapu, KK; Templeton, JA; Lee, JW, “Polarization as a field variable from molecular dynamics simulations.” Journal of Chemical Physics (2013), 139:054115. Please refer to the standard finite element (FE) texts, e.g. T.J.R Hughes ” The finite element method “, Dover 2003, for the basics of FE simulation.

(Maras)

Maras, Trushin, Stukowski, Ala-Nissila, Jonsson, Comp Phys Comm, 205, 13-21 (2016).

(Marrink)

Marrink, de Vries, Mark, J Phys Chem B, 108, 750-760 (2004).

(Marshall, 2009)

Marshall, J. S. (2009). Discrete-element modeling of particulate aerosol flows. Journal of Computational Physics, 228(5), 1541-1561.

(Martyna1992)

Martyna, Klein, Tuckerman, J Chem Phys, 97, 2635 (1992); Martyna, Tuckerman, Tobias, Klein, Mol Phys, 87, 1117.

(Martyna1994)

Martyna, Tobias and Klein, J Chem Phys, 101, 4177 (1994).

(Mason)

J. K. Mason, Acta Cryst A65, 259 (2009).

(Mattice)

Mattice, Suter, Conformational Theory of Large Molecules, Wiley, New York, 1994.

(Maxwell)

J.C. Maxwell, Philos. Tans. Royal Soc. London, 157: 49-88 (1867).

(Mayergoyz)

I.D. Mayergoyz, G. Bertotti, C. Serpico (2009). Elsevier (2009)

(Mayo)

Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

(Mees)

M. J. Mees, G. Pourtois, E. C. Neyts, B. J. Thijsse, and A. Stesmans, Phys. Rev. B 85, 134301 (2012).

(Mei)

Mei, Davenport, Fernando, Phys Rev B, 43 4653 (1991)

(Melchor)

Gonzalez-Melchor, Mayoral, Velazquez, and Alejandre, J Chem Phys, 125, 224107 (2006).

(Meloni)

Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

(Meremianin)

Meremianin, J. Phys. A, 39, 3099 (2006).

(Mezei)

Mezei, J Chem Phys, 86, 7084 (1987)

(Mickel)

W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke, J. Chem. Phys. 138, 044501 (2013).

(Mie)

G. Mie, Ann Phys, 316, 657 (1903).

(Miller1)

T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, G. J. Martyna, J. Chem. Phys., 116, 8649-8659 (2002).

(Miller2)

Miller, Tadmor, Gibson, Bernstein and Pavia, J Chem Phys, 144, 184107 (2016).

(Minary)

Minary, Martyna, and Tuckerman, J Chem Phys, 18, 2510 (2003).

(Mindlin and Deresiewicz, 1953)

Mindlin, R.D., & Deresiewicz, H (1953). Elastic Spheres in Contact under Varying Oblique Force. J. Appl. Mech., ASME 20, 327-344.

(Mindlin, 1949)

Mindlin, R. D. (1949). Compliance of elastic bodies in contact. J. Appl. Mech., ASME 16, 259-268.

(Miron)

R. A. Miron and K. A. Fichthorn, J Chem Phys, 119, 6210 (2003).

(Mishin)

Mishin, Mehl, and Papaconstantopoulos, Acta Mater, 53, 4029 (2005).

(Mitchell and Fincham)

Mitchell, Fincham, J Phys Condensed Matter, 5, 1031-1038 (1993).

(Mitchell2011)

Mitchell. A non-local, ordinary-state-based viscoelasticity model for peridynamics. Sandia National Lab Report, 8064:1-28 (2011).

(Mitchell2011a)

Mitchell. A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics. Sandia National Lab Report, 3166:1-34 (2011).

(Mniszewski)

S. M. Mniszewski, M. J. Cawkwell, M. E. Wall, J. Mohd-Yusof, N. Bock, T. C. Germann, and A. M. N. Niklasson, J. Chem. Theory Comput., 11, 4644 (2015).

(Monaghan)

Monaghan and Gingold, Journal of Computational Physics, 52, 374-389 (1983).

(Moore)

Moore, J Chem Phys, 144, 104501 (2016).

(Mori)

Y. Mori, Y. Okamoto, J. Phys. Soc. Jpn., 7, 074003 (2010).

(Moriarty1)

Moriarty, Physical Review B, 38, 3199 (1988).

(Moriarty2)

Moriarty, Physical Review B, 42, 1609 (1990). Moriarty, Physical Review B 49, 12431 (1994).

(Moriarty3)

Moriarty, Benedict, Glosli, Hood, Orlikowski, Patel, Soderlind, Streitz, Tang, and Yang, Journal of Materials Research, 21, 563 (2006).

(Morris)

Morris, Fox, Zhu, J Comp Physics, 136, 214-226 (1997).

(Moustafa)

Sabry G. Moustafa, Andrew J. Schultz, and David A. Kofke, Very fast averaging of thermal properties of crystals by molecular simulation, Phys. Rev. E [92], 043303 (2015)

(Muller-Plathe1)

Muller-Plathe, J Chem Phys, 106, 6082 (1997).

(Muller-Plathe2)

Muller-Plathe, Phys Rev E, 59, 4894-4898 (1999).

(Murdick)

D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor, Phys. Rev. B, 73, 45206 (2006).

(Murty)

M.V.R. Murty, H.A. Atwater, Phys Rev B, 51, 4889 (1995).

(Nakano)

A. Nakano, Computer Physics Communications, 104, 59-69 (1997).

(Neelov)

Neelov, Holm, J Chem Phys 132, 234103 (2010)

(Negre2016)

C. F. A. Negre, S. M. Mniszewski, M. J. Cawkwell, N. Bock, M. E. Wall, and A. M. N. Niklasson, J. Chem. Theory Comp., 12, 3063 (2016).

(Nelson)

Nelson, Halperin, Phys Rev B, 19, 2457 (1979).

(Nettleton)

Nettleton and Green, J Chem Phys, 29, 6 (1958).

(Neyts)

E. C. Neyts and A. Bogaerts, Theor. Chem. Acc. 132, 1320 (2013).

(Nicholson and Rutledge)

Nicholson and Rutledge, J Chem Phys, 145, 244903 (2016).

(Nicklas)

The spline-based MEAM+SW format was first devised and used to develop potentials for bcc transition metals by Jeremy Nicklas, Michael Fellinger,

(Niklasson2002)

A. M. N. Niklasson, Phys. Rev. B, 66, 155115 (2002).

(Niklasson2008)

A. M. N. Niklasson, Phys. Rev. Lett., 100, 123004 (2008).

(Niklasson2014)

A. M. N. Niklasson and M. Cawkwell, J. Chem. Phys., 141, 164123, (2014).

(Niklasson2017)

A. M. N. Niklasson, J. Chem. Phys., 147, 054103 (2017).

(Noid)

Noid, Chu, Ayton, Krishna, Izvekov, Voth, Das, Andersen, J Chem Phys 128, 134105 (2008).

(Nordlund95)

Nordlund, Kai. Computational materials science 3.4 (1995): 448-456.

(Nordlund98)

Nordlund, Kai, et al. Physical Review B 57.13 (1998): 7556.

(Norman)

G E Norman, S V Starikov, V V Stegailov et al., Contrib. Plasma Phys., 53, 129-139 (2013).

(Noskov)

Noskov, Lamoureux and Roux, J Phys Chem B, 109, 6705 (2005).

(Nurdin)

Nurdin and Schotte Phys Rev E, 61(4), 3579 (2000)

(O’Connor)

O’Connor et al., J. Chem. Phys. 142, 024903 (2015).

(Okabe)

T. Okabe, M. Kawata, Y. Okamoto, M. Masuhiro, Chem. Phys. Lett., 335, 435-439 (2001).

(Ollila et al.)

Ollila, S.T.T., Denniston, C., Karttunen, M., and Ala-Nissila, T., Fluctuating lattice-Boltzmann model for complex fluids, J. Chem. Phys. 134 (2011) 064902.

(Omelyan)

Omelyan, Mryglod, and Folk. Phys. Rev. Lett. 86(5), 898. (2001).

(Oppelstrup)

Oppelstrup, unpublished, 2015. Oppelstrup and Moriarty, to be published.

(Orsi)

Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12): e28637, 2011.

(Otis R. Walton)

Walton, O.R., Personal Communication

(Ouldridge)

T.E. Ouldridge, A.A. Louis, J.P.K. Doye, J. Chem. Phys. 134, 085101 (2011).

(Ouldridge-DPhil)

T.E. Ouldridge, Coarse-grained modelling of DNA and DNA self-assembly, DPhil. University of Oxford (2011).

(Ouyang1)

W. Ouyang, D. Mandelli, M. Urbakh and O. Hod, Nano Lett. 18, 6009-6016 (2018).

(Ouyang2)

W. Ouyang et al., J. Chem. Theory Comput. 16(1), 666-676 (2020).

(PASS)

PASS webpage: https://www.sdu.dk/en/DPASS

(PLUMED)

G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni and G. Bussi, Comp. Phys. Comm 185, 604 (2014)

(Paquay)

Paquay and Kusters, Biophys. J., 110, 6, (2016). preprint available at arXiv:1411.3019.

(Park)

Park, Schulten, J. Chem. Phys. 120 (13), 5946 (2004)

(Parks)

Parks, Lehoucq, Plimpton, Silling, Comp Phys Comm, 179(11), 777-783 (2008).

(Parrinello1981)

Parrinello and Rahman, J Appl Phys, 52, 7182 (1981).

(Paula Leite2016)

Paula Leite , Freitas, Azevedo, and de Koning, J Chem Phys, 126, 044509 (2016).

(Paula Leite2017)

Paula Leite, Santos-Florez, and de Koning, Phys Rev E, 96, 32115 (2017).

(Pearlman)

Pearlman, J Chem Phys, 98, 1487 (1994)

(Pedersen)

Pedersen, J. Chem. Phys., 139, 104102 (2013).

(Peng)

Peng, Ren, Dudarev, Whelan, Acta Crystallogr. A, 52, 257-76 (1996).

(Perram)

Perram and Rasmussen, Phys Rev E, 54, 6565-6572 (1996).

(Petersen)

Petersen, J Chem Phys, 103, 3668 (1995).

(Petersen)

Petersen, Lechman, Plimpton, Grest, in’ t Veld, Schunk, J Chem Phys, 132, 174106 (2010).

(Pettifor_1)

D.G. Pettifor and I.I. Oleinik, Phys. Rev. B, 59, 8487 (1999).

(Pettifor_2)

D.G. Pettifor and I.I. Oleinik, Phys. Rev. Lett., 84, 4124 (2000).

(Pettifor_3)

D.G. Pettifor and I.I. Oleinik, Phys. Rev. B, 65, 172103 (2002).

(Phillips)

C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput Phys Comm, 230, 7191-7201 (2011).

(Piaggi)

Piaggi and Parrinello, J Chem Phys, 147, 114112 (2017).

(Pisarev)

V V Pisarev and S V Starikov, J. Phys.: Condens. Matter, 26, 475401 (2014).

(Pollock)

Pollock and Glosli, Comp Phys Comm, 95, 93 (1996).

(Price1)

Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Price2)

Price, Stone and Alderton, Mol Phys, 52, 987 (1984).

(QEq/Fire)

T.-R. Shan, A. P. Thompson, S. J. Plimpton, in preparation

(Qi)

Qi and Reed, J. Phys. Chem. A 116, 10451 (2012).

(Ramirez)

J. Ramirez, S.K. Sukumaran, B. Vorselaars and A.E. Likhtman, J. Chem. Phys. 133, 154103 (2010).

(Rappe)

Rappe and Goddard III, Journal of Physical Chemistry, 95, 3358-3363 (1991).

(Ravelo)

Ravelo, Holian, Germann and Lomdahl, Phys Rev B, 70, 014103 (2004).

(ReaxFF)

A. C. T. van Duin, S. Dasgupta, F. Lorant, W. A. Goddard III, J Physical Chemistry, 105, 9396-9049 (2001)

(Rector)

Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

(Ree)

Ree, Journal of Chemical Physics, 73, 5401 (1980).

(Reed)

Reed, Fried, and Joannopoulos, Phys. Rev. Lett., 90, 235503 (2003).

(Reed2)

Reed, J. Phys. Chem. C, 116, 2205 (2012).

(Rick)

S. W. Rick, S. J. Stuart, B. J. Berne, J Chem Phys 101, 16141 (1994).

(Rohart)

Rohart and Thiaville, Physical Review B, 88(18), 184422. (2013).

(Rosenberger)

Rosenberger, Sanyal, Shell and van der Vegt, Journal of Chemical Physics, 2019, 151 (4), 044111.

(Rubensson)

E. H. Rubensson, A. M. N. Niklasson, SIAM J. Sci. Comput. 36 (2), 147-170, (2014).

(Rutherford)

A M Rutherford and D M Duffy, J. Phys.: Condens. Matter, 19, 496201-496210 (2007).

(Ryckaert)

J.-P. Ryckaert, G. Ciccotti and H. J. C. Berendsen, J of Comp Phys, 23, 327-341 (1977).

(SMTB-Q_1)

N. Salles, O. Politano, E. Amzallag, R. Tetot, Comput. Mater. Sci. 111 (2016) 181-189

(SMTB-Q_2)

E. Maras, N. Salles, R. Tetot, T. Ala-Nissila, H. Jonsson, J. Phys. Chem. C 2015, 119, 10391-10399

(SMTB-Q_3)

R. Tetot, N. Salles, S. Landron, E. Amzallag, Surface Science 616, 19-8722 28 (2013)

(SRIM)

SRIM webpage: http://www.srim.org/

(SW)

F. H. Stillinger, and T. A. Weber, Phys. Rev. B, 31, 5262 (1985).

(SWM4-NDP)

Lamoureux, Harder, Vorobyov, Roux, MacKerell, Chem Phys Let, 418, 245-249 (2006)

(Sadigh)

B Sadigh, P Erhart, A Stukowski, A Caro, E Martinez, and L Zepeda-Ruiz, Phys. Rev. B, 85, 184203 (2012).

(Safran)

Safran, Statistical Thermodynamics of Surfaces, Interfaces, And Membranes, Westview Press, ISBN: 978-0813340791 (2003).

(Salerno)

Salerno, Bernstein, J Chem Theory Comput, –, —- (2018).

(Sanyal1)

Sanyal and Shell, Journal of Chemical Physics, 2016, 145 (3), 034109.

(Sanyal2)

Sanyal and Shell, Journal of Physical Chemistry B, 122 (21), 5678-5693.

(Schelling)

Patrick K. Schelling, Comp. Mat. Science, 44, 274 (2008).

(Schlitter1)

Schlitter, Swegat, Mulders, “Distance-type reaction coordinates for modelling activated processes”, J Molecular Modeling, 7, 171-177 (2001).

(Schlitter2)

Schlitter and Klahn, “The free energy of a reaction coordinate at multiple constraints: a concise formulation”, Molecular Physics, 101, 3439-3443 (2003).

(Schmid)

S. Bureekaew, S. Amirjalayer, M. Tafipolsky, C. Spickermann, T.K. Roy and R. Schmid, Phys. Status Solidi B, 6, 1128 (2013).

(Schneider)

Schneider and Stoll, Phys Rev B, 17, 1302 (1978).

(Schratt & Mohles)

Schratt, Mohles. Comp. Mat. Sci. 182 (2020) 109774 ———-

(Schroeder)

Schroeder and Steinhauser, J Chem Phys, 133, 154511 (2010).

(Semaev)

Semaev, Cryptography and Lattices, 181 (2001).

(Sheppard)

Sheppard, Terrell, Henkelman, J Chem Phys, 128, 134106 (2008). See ref 1 in this paper for original reference to Qmin in Jonsson, Mills, Jacobsen.

(Shinoda)

Shinoda, DeVane, Klein, Mol Sim, 33, 27 (2007).

(Shinoda)

Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

(Sides)

Sides, Grest, Stevens, Plimpton, J Polymer Science B, 42, 199-208 (2004).

(Silbert)

Silbert, Ertas, Grest, Halsey, Levine, Plimpton, Phys Rev E, 64, p 051302 (2001).

(Silbert, 2001)

Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., Levine, D., & Plimpton, S. J. (2001). Granular flow down an inclined plane: Bagnold scaling and rheology. Physical Review E,

(Silling 2000)

Silling, J Mech Phys Solids, 48, 175-209 (2000).

(Silling 2007)

Silling, Epton, Weckner, Xu, Askari, J Elasticity, 88, 151-184 (2007).

(Singh)

Singh and Warner, Acta Mater, 58, 5797-5805 (2010),

(Sirk1)

Sirk TW, Sliozberg YR, Brennan JK, Lisal M, Andzelm JW, J Chem Phys, 136 (13) 134903, 2012.

(Sirk2)

Sirk, Moore, Brown, J Chem Phys, 138, 064505 (2013).

(Skomski)

Skomski, R. (2008). Simple models of magnetism. Oxford University Press.

(Snodin)

B.E. Snodin, F. Randisi, M. Mosayebi, et al., J. Chem. Phys. 142, 234901 (2015).

(Srivastava)

Zhigilei, Wei, Srivastava, Phys. Rev. B 71, 165417 (2005).

(Steinbach)

Steinbach, Brooks, J Comput Chem, 15, 667 (1994).

(Steinhardt)

P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

(Stiles)

Stiles , Hubbard, and Kayser, J Chem Phys, 77, 6189 (1982).

(Stillinger)

Stillinger, Weber, Phys. Rev. B 31, 5262 (1985).

(Stoddard)

Stoddard and Ford, Phys Rev A, 8, 1504 (1973).

(Streitz)

F. H. Streitz, J. W. Mintmire, Phys Rev B, 50, 11996-12003 (1994).

(Strong)

Strong and Eaves, J. Phys. Chem. B 121, 189 (2017).

(Stuart)

Stuart, Tutein, Harrison, J Chem Phys, 112, 6472-6486 (2000).

(Stukowski)

Stukowski, Sadigh, Erhart, Caro; Modeling Simulation Materials Science & Engineering, 7, 075005 (2009).

(Su)

Su and Goddard, Excited Electron Dynamics Modeling of Warm Dense Matter, Phys Rev Lett, 99:185003 (2007).

(Sulc1)

P. Sulc, F. Romano, T. E. Ouldridge, et al., J. Chem. Phys. 140, 235102 (2014).

(Sulc2)

P. Sulc, F. Romano, T.E. Ouldridge, L. Rovigatti, J.P.K. Doye, A.A. Louis, J. Chem. Phys. 137, 135101 (2012).

(Sun)

Sun, J. Phys. Chem. B, 102, 7338-7364 (1998).

(Surblys2019)

Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).

(Surblys2021)

Surblys, Matsubara, Kikugawa, Ohara, J Appl Phys 130, 215104 (2021).

(Sutmann)

Sutmann, Arnold, Fahrenberger, et. al., Physical review / E 88(6), 063308 (2013)

(Sutmann) G. Sutmann. ScaFaCoS - a Scalable library of Fast Coulomb Solvers for particle Systems.

In Bajaj, Zavattieri, Koslowski, Siegmund, Proceedings of the Society of Engineering Science 51st Annual Technical Meeting. 2014.

(Swinburne)

Swinburne and Marinica, Physical Review Letters, 120, 1 (2018)

(Tadmor)

Tadmor, Elliott, Sethna, Miller and Becker, JOM, 63, 17 (2011). doi: https://doi.org/10.1007/s11837-011-0102-6

(Tainter 2011)

Tainter, Pieniazek, Lin, and Skinner, J. Chem. Phys., 134, 184501 (2011)

(Tainter 2015)

Tainter, Shi, and Skinner, 11, 2268 (2015)

(Templeton2010)

Templeton, JA; Jones, RE; Wagner, GJ, “Application of a field-based method to spatially varying thermal transport problems in molecular dynamics.” Modelling and Simulation in Materials Science and Engineering (2010), 18:085007.

(Templeton2011)

Templeton, JA; Jones, RE; Lee, JW; Zimmerman, JA; Wong, BM, “A long-range electric field solver for molecular dynamics based on atomistic-to-continuum modeling.” Journal of Chemical Theory and Computation (2011), 7:1736.

(Tersoff_1)

J. Tersoff, Phys Rev B, 37, 6991 (1988).

(Tersoff_2)

J. Tersoff, Phys Rev B, 38, 9902 (1988).

(Tersoff_3)

J. Tersoff, Phys Rev B, 39, 5566 (1989); errata (PRB 41, 3248)

(Theodorou)

Theodorou, Suter, Macromolecules, 18, 1206 (1985).

(Thole)

Chem Phys, 59, 341 (1981).

(Thompson1)

Thompson, Plimpton, Mattson, J Chem Phys, 131, 154107 (2009).

(Thompson2)

Thompson, Swiler, Trott, Foiles, Tucker, J Comp Phys, 285, 316 (2015).

(Thornton et al, 2013)

Thornton, C., Cummins, S. J., & Cleary, P. W. (2013). An investigation of the comparative behavior of alternative contact force models during inelastic collisions. Powder

(Thornton, 1991)

Thornton, C. (1991). Interparticle sliding in the presence of adhesion. J. Phys. D: Appl. Phys. 24 1942

(To)

Q.D. To, V.H. Vu, G. Lauriat, and C. Leonard. J. Math. Phys. 56, 103101 (2015).

(Todd)

B. D. Todd, Denis J. Evans, and Peter J. Daivis: “Pressure tensor for inhomogeneous fluids”, Phys. Rev. E 52, 1627 (1995).

(Toukmaji)

Toukmaji, Sagui, Board, and Darden, J Chem Phys, 113, 10913 (2000).

(Toxvaerd)

Toxvaerd, Dyre, J Chem Phys, 134, 081102 (2011).

(Tranchida)

Tranchida, Plimpton, Thibaudeau and Thompson, Journal of Computational Physics, 372, 406-425, (2018).

(Tsuji et al, 1992)

Tsuji, Y., Tanaka, T., & Ishida, T. (1992). Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder technology, 71(3),

(Tsuzuki)

Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

(Tuckerman1)

M. Tuckerman and B. Berne, J Chem Phys, 99, 2796 (1993).

(Tuckerman2)

Tuckerman, Alejandre, Lopez-Rendon, Jochim, and Martyna, J Phys A: Math Gen, 39, 5629 (2006).

(Tuckerman3)

Tuckerman, Berne and Martyna, J Chem Phys, 97, p 1990 (1992).

(Tuckerman4)

Tuckerman, Mundy, Balasubramanian, Klein, J Chem Phys, 106, 5615 (1997).

(Ulomek)

Ulomek, Brien, Foiles, Mohles, Modelling Simul. Mater. Sci. Eng. 23 (2015) 025007

(Vaiwala)

Vaiwala, Jadhav, and Thaokar, J Chem Phys, 146, 124904 (2017).

(Valone)

Valone, Baskes, Martin, Phys. Rev. B, 73, 214209 (2006).

(Varshalovich)

Varshalovich, Moskalev, Khersonskii, Quantum Theory of Angular Momentum, World Scientific, Singapore (1987).

(Vashishta1990)

P. Vashishta, R. K. Kalia, J. P. Rino, Phys. Rev. B 41, 12197 (1990).

(Vashishta2007)

P. Vashishta, R. K. Kalia, A. Nakano, J. P. Rino. J. Appl. Phys. 101, 103515 (2007).

(Veld)

In ‘t Veld, Ismail, Grest, J Chem Phys, 127, 144711 (2007).

(Volkov1)

Volkov and Zhigilei, J Phys Chem C, 114, 5513 (2010).

(Volkov2)

Volkov, Simov and Zhigilei, APS Meeting Abstracts, Q31.013 (2008).

(Voter1998)

Voter, Phys Rev B, 57, 13985 (1998).

(Voter2000)

Sorensen and Voter, J Chem Phys, 112, 9599 (2000)

(Voter2002)

Voter, Montalenti, Germann, Annual Review of Materials Research 32, 321 (2002).

(Voter2013)

S. Y. Kim, D. Perez, A. F. Voter, J Chem Phys, 139, 144110 (2013).

(Wagner)

Wagner, GJ; Jones, RE; Templeton, JA; Parks, MA, “An atomistic-to-continuum coupling method for heat transfer in solids.” Special Issue of Computer Methods and Applied Mechanics (2008) 197:3351.

(Wang et al, 2015)

Wang, Y., Alonso-Marroquin, F., & Guo, W. W. (2015). Rolling and sliding in 3-D discrete element models. Particuology, 23, 49-55.

(Wang1)

J. Wang, H. S. Yu, P. A. Langston, F. Y. Fraige, Granular Matter, 13, 1 (2011).

(Wang2)

J. Wang, and A. Rockett, Phys. Rev. B, 43, 12571 (1991).

(Wang3)

Wang and Holm, J Chem Phys, 115, 6277 (2001).

(Wang4)

Wang, Van Hove, Ross, Baskes, J. Chem. Phys., 121, 5410 (2004).

(Ward)

D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman, Phys. Rev. B, 85,115206 (2012).

(Warren)

Warren, Phys Rev E, 68, 066702 (2003).

(Watkins)

Watkins and Jorgensen, J Phys Chem A, 105, 4118-4125 (2001).

(Weeks)

Weeks, Chandler and Andersen, J. Chem. Phys., 54, 5237 (1971)

(WeinanE)

E, Ren, Vanden-Eijnden, Phys Rev B, 66, 052301 (2002).

(Wen)

M. Wen, S. Carr, S. Fang, E. Kaxiras, and E. B. Tadmor, Phys. Rev. B, 98, 235404 (2018)

(Wennberg)

Wennberg, Murtola, Hess, Lindahl, J Chem Theory Comput, 9, 3527 (2013).

(Wicaksono1)

Wicaksono, Sinclair, Militzer, Computational Materials Science, 117, 397-405 (2016).

(Wicaksono2)

Wicaksono, figshare, https://doi.org/10.6084/m9.figshare.1488628.v1 (2015).

(Wirnsberger)

Wirnsberger, Frenkel, and Dellago, J Chem Phys, 143, 124104 (2015).

(Wolf)

D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht, J Chem Phys, 110, 8254 (1999).

(Wolff)

Wolff and Rudd, Comp Phys Comm, 120, 200-32 (1999).

(Wood)

Wood and Thompson, J Chem Phys, 148, 241721, (2018)

(Yeh)

Yeh and Berkowitz, J Chem Phys, 111, 3155 (1999).

(ZBL)

J.F. Ziegler, J.P. Biersack, U. Littmark, ‘Stopping and Ranges of Ions in Matter’ Vol 1, 1985, Pergamon Press.

(Zhang1)

Zhang and Makse, Phys Rev E, 72, p 011301 (2005).

(Zhang2)

Zhang and Trinkle, Computational Materials Science, 124, 204-210 (2016).

(Zhang3)

Zhang, Glotzer, Nanoletters, 4, 1407-1413 (2004).

(Zhang4)

Zhang, J Chem Phys, 106, 6102 (1997).

(Zhang5)

Zhang, Lussetti, de Souza, Muller-Plathe, J Phys Chem B, 109, 15060-15067 (2005).

(Zhigilei1)

Volkov and Zhigilei, ACS Nano 4, 6187 (2010).

(Zhigilei2)

Volkov, Simov, Zhigilei, ASME paper IMECE2008, 68021 (2008).

(Zhigilei3)

Volkov, Zhigilei, J. Phys. Chem. C 114, 5513 (2010).

(Zhigilei4)

Wittmaack, Banna, Volkov, Zhigilei, Carbon 130, 69 (2018).

(Zhigilei5)

Wittmaack, Volkov, Zhigilei, Compos. Sci. Technol. 166, 66 (2018).

(Zhigilei6)

Wittmaack, Volkov, Zhigilei, Carbon 143, 587 (2019).

(Zhigilei7)

Volkov, Zhigilei, Phys. Rev. Lett. 104, 215902 (2010).

(Zhigilei8)

Volkov, Shiga, Nicholson, Shiomi, Zhigilei, J. Appl. Phys. 111, 053501 (2012).

(Zhigilei9)

Volkov, Zhigilei, Appl. Phys. Lett. 101, 043113 (2012).

(Zhigilei10)

Jacobs, Nicholson, Zemer, Volkov, Zhigilei, Phys. Rev. B 86, 165414 (2012).

(Zhou1)

Zhou, Saidi, Fichthorn, J Phys Chem C, 118(6), 3366-3374 (2014).

(Zhou3)

X. W. Zhou, M. E. Foster, R. E. Jones, P. Yang, H. Fan, and F. P. Doty, J. Mater. Sci. Res., 4, 15 (2015).

(Zhou4)

X. W. Zhou, M. E. Foster, J. A. Ronevich, and C. W. San Marchi, J. Comp. Chem., 41, 1299 (2020).

(Zhu)

Zhu, Tajkhorshid, and Schulten, Biophys. J. 83, 154 (2002).

(Ziegler)

J.F. Ziegler, J. P. Biersack and U. Littmark, “The Stopping and Range of Ions in Matter”, Volume 1, Pergamon, 1985.

(Zimmerman2004)

Zimmerman, JA; Webb, EB; Hoyt, JJ;. Jones, RE; Klein, PA; Bammann, DJ, “Calculation of stress in atomistic simulation.” Special Issue of Modelling and Simulation in Materials Science and Engineering (2004),12:S319.

(Zimmerman2010)

Zimmerman, JA; Jones, RE; Templeton, JA, “A material frame approach for evaluating continuum variables in atomistic simulations.” Journal of Computational Physics (2010), 229:2364.

(de Buyl)

de Buyl, Colberg and Hofling, H5MD: A structured, efficient, and portable file format for molecular data, Comp. Phys. Comm. 185(6), 1546-1553 (2014) -

(de Koning)

de Koning and Antonelli, Phys Rev E, 53, 465 (1996).

(electronic stopping)

Wikipedia - Electronic Stopping Power: https://en.wikipedia.org/wiki/Stopping_power_%28particle_radiation%29

(tenWolde)

P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

(vanWijk)

M. M. van Wijk, A. Schuring, M. I. Katsnelson, and A. Fasolino, Physical Review Letters, 113, 135504 (2014)