О необходимости систематизации знаний при подготовке школьников к олимпиадам, ЕГЭ и вступительным испытаниям в ВУЗы по физике

(на примере УМК по физике авторов А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.)

Боков П.Ю., <u>Грачев А.В.</u>, Иванова О.С., Погожев В.А, Салецкий А.М. Россия, Москва, физический факультет МГУ им. М.В. Ломоносова

Восприятие школьников

- Курс физики бессистемный набор огромного числа не связанных между собой экспериментальных фактов, понятий, величин, законов, теорем и формул
- Результат отсутствует ощущение целостности и логической стройности курса

Восприятие школьников

 Даже у лучших школьников, как правило, знания по физике представляют собой бессистемный набор разрозненных сведений из разных разделов курса

В чем причина?

Пример

Механика Ньютона в некоторых УМК (9 класс). Рассматриваются примеры сил в механике. И лишь в следующей главе появляются законы

Ньютона. В 7 классе еще хуже.

Результат

Вплоть до окончания 11 класса многие учащиеся не понимают, что представляют и как связаны между собой различные силы (например, сила тяжести, сила нормальной реакции опоры и вес)

Еще один пример

Все пишется правильно, и примеры хорошие, но не вводятся определения используемых понятий и физических величин (проекции вектора и т.п.), не формулируются аккуратно базовые законы. При этом учебник легкий (по массе) и выглядит небольшим.

Результат

Либо учитель должен сам рассказывать и вводить определения (при условии, что он их знает), либо школьники должны искать дополнительные источники информации, либо у школьников нарастает непонимание и складывается неверная картина рассматриваемой ситуации.

Необходимо:

1. Убедить школьника в том, что курс физики представляет собой логически стройную теорию, базирующуюся на более чем ограниченном количестве утверждений

Необходимо:

2. Раскрыть школьникам логическую структуру построения курса: от аксиоматики и определений до практического применения (в частности, до решения задач)

3. При этом необходимо раскрыть школьнику логическую структуру построения каждого раздела физики

Грамотный (осознанный) разговор о механическом движении невозможен без введения системы отсчета!!!

Цивилизация началась с введения СО.

Пространственное мышление (планы, карты и т.п.)

Решение задач кинематики: введение CO, запись закона движения, условия задачи в виде уравнений, решение системы, анализ ответа в общем виде

Пример – механика Ньютона

- Три закона Ньютона
- Три закона, описывающие индивидуальные свойства сил (Гука, Всемирного тяготения и Амонтона-Кулона)
- Все остальное (закон Архимеда, законы статики, законы сохранения) следствия

УМК «Физика» 7-9 и 10-11, базовый и профильный уровни

- Грачев А.В., доцент, к.ф.-м.н., Лауреат Ломоносовской премии 2008
- Погожев В.А., доцент, к.ф.-м.н., Лауреат Ломоносовской премии 2010
- Салецкий А.М., профессор, д.ф.-м.н., зав. кафедрой общей физики, Лауреат Ломоносовской премии 1998, 2004 (наука)
- Боков П.Ю., доцент, к.ф.-м.н., директор Московской гимназии на Юго-Западе №1543
- Преподаватели кафедры общей физики физического факультета МГУ им. М.В. Ломоносова

Пример («Физика-7») — о необходимости введения СО

• Нет смысла говорить о движении, если не указана СО!

Решение проблем

- Логически последовательное изложение каждого из разделов курса физики
- Наличие итоговых схем (таблиц), раскрывающих логическую структуру раздела
- По мнению аппробаторов, эффективность последовательного освоения каждого из разделов возрастает при параллельном изучении итоговых схем

Требования к определению физической величины:

- 1. Однозначность
- 2. Рецепт либо измерения, либо расчета через уже определенные величины

ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Импульс материальной точки в ИСО:

$$\vec{p} = m \cdot \vec{v}$$
.

Импульс системы материальных точек:

$$\vec{p} = \vec{p}_1 + \vec{p}_2 + \dots + \vec{p}_N$$

Изменение импульса материальной точки в ИСО:

$$\Delta \vec{p} = \vec{F} \cdot \Delta t,$$

где \vec{F} — сумма всех действующих на тело сил, Δt — время их действия.

Изменение суммарного импульса системы материальных точек в ИСО:

$$\Delta \vec{p} = (\vec{F}_{1\mathrm{ex}} + \vec{F}_{2\mathrm{ex}} + ... + \vec{F}_{N\mathrm{ex}}) \cdot \Delta t,$$
 где $\vec{F}_{1\mathrm{ex}} + \vec{F}_{2\mathrm{ex}} + ... + \vec{F}_{N\mathrm{ex}} -$ сумма всех внешних сил.

Закон сохранения импульса

Если сумма всех внешних сил, действующих на тела системы, равна нулю, то импульс системы тел в ИСО не изменяется с течением времени (сохраняется).

Если
$$(\vec{F}_{1\mathrm{ex}} + \vec{F}_{2\mathrm{ex}}) = 0$$
, то $\Delta \vec{p} = 0$.

Закон сохранения проекции импульса

Если проекция на координатную ось ИСО суммы всех внешних сил, действующих на тела системы, равна нулю, то проекция импульса системы тел на эту ось не изменяется с течением времени (сохраняется).

О формулировках физических законов

• Корректные, понятные, удобные в применении

Пример:

• Закон сохранения – частный случай закона изменения

Работа с формулировкой закона

Либо учить

Либо понимать

Выбор за вами

Не учить, а изучать!

Примерная рекомендуемая последовательность вопросов про изучение закона

- 1. Объект (объекты)
- 2. Явление
- 3. Физические величины (!важно уже определенные!)
- 4. Утверждение (например, в виде формулы)
- 5. Условие выполнимости утверждения (см. п. 4)
- !Важно! п. 5 входит в формулировку закона
- Пример: II закон Ньютона (примеры)

Итог

Наличие итоговых таблиц (схем)

- 1. позволяет школьникам прочувствовать логическую структуру каждого из разделов
- 2. создает возможность поэтапного контроля

СИЛЫ В МЕХАНИКЕ

Название силы На какое тело действует Сили тяжести ж. g На тело, находящееся у поверхности Земли			Какое тело действует	Чему равна по модулю	Куда направлена	Проявление действия силы	
		Земля	m·g	Вертикально вниз	Притяпивает к Земле		
Сила упругости	$\vec{F}_{ m yup}$	На тело, вызваниее деформацию	Деформирован- ное тело	Пропорцио- нальна дефор- мации: k · Δl	В сторону, про- тивоположную деформации	Стремится сдвинуть деформиру- кицее тело	
Сила реакции горазовтальной опоры на свобод- по лежащее на ней тело	\vec{N}	На тело, лежащее на горизонтальной опоре	Горизонтальная опора	Силе тяжести тела	Вертикально вверх	Уравновение нает силу тяжести, примагмающую тело к опоре	
Вес тела, лежащего на опоре	\vec{P}	На опору	Тело, лежащее на опоре	Силе реакции опоры	Вертикально вниз	Деформирует опору	
Вес тела, висащего на подвесе	\vec{P}	На подвес	Висящее тело	Силе упругости подвеса	Вертикально вниз	Растягивает подвес	
Силь сухого трения спольжения	\vec{F}_{TP}	На тело, скользищее по поверхности	Поверхность, по которой скользит тело	$\mu \cdot N$	В сторону, про- тивоположную движению тела	Препятствует движению тела по поверхно- сти (тормовит тело)	

Результат. Опыт аппробаторов

• Школьники стали лучше понимать «откуда что берется, и что из чего вытекает».

Понимание логической структуры раздела позволяет школьникам осознанно справляться с поставленными перед ними проблемами.

Например, описывать причины наблюдаемых явлений, грамотно выбирать модели при решении задач и решать эти задачи.

Появляется возможность выработать правильную осознанную последовательность действий при решении задач - **алгоритм**

ОСНОВНЫЕ ПОЛОЖЕНИЯ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ И ТЕРМОДИНАМИКИ

Все процессы в этих разделах рассматриваются в ИСО, в которой центр масс термодинамической системы покоится.

Все вещества состоят из частиц. Эти частицы находятся в непрерывном хаотическом движении.

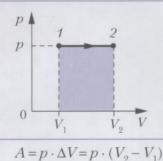
Частицы взаимодействуют друг с другом.

Изолированная термодинамическая система самопроизвольно переходит в состояние термодинамического равновесия. (Нулевой закон термодинамики)

Основное уравнение МКТ

$$p = \frac{1}{3} \cdot n \cdot m_0 \cdot v^2$$

Уравнение состояния вещества Уравнение Менделеева — Клапейрона


$$p \cdot V = \mathbf{v} \cdot R \cdot T = \frac{m}{M} \cdot R \cdot T$$

Физический смысл температуры

$$\frac{m_0 \cdot v^2}{2} = \frac{3}{2} \cdot k \cdot T,$$

$$k = \frac{R}{N_{\rm A}} \approx 1,38 \cdot 10^{-23} \, \frac{\textrm{Дж}}{\textrm{K}}$$

 $U_{\scriptscriptstyle 0} + A + Q = U_{\scriptscriptstyle \rm K} \label{eq:U0}$ (Первый закон термодинамики)

Внутренняя энергия идеального одноатомного газа

$$U = N \cdot \frac{m_0 \cdot v^2}{2} = \frac{3}{2} \cdot \mathbf{v} \cdot R \cdot T$$

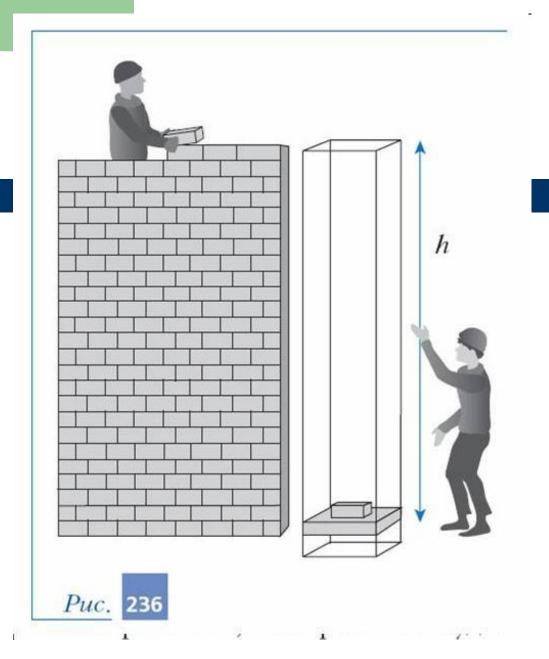
Применение первого закона термодинамики к изопроцессам

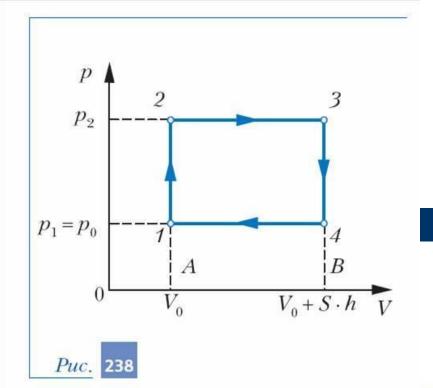
$$Q_{12} = U_2 - U_1 + A_{12}$$

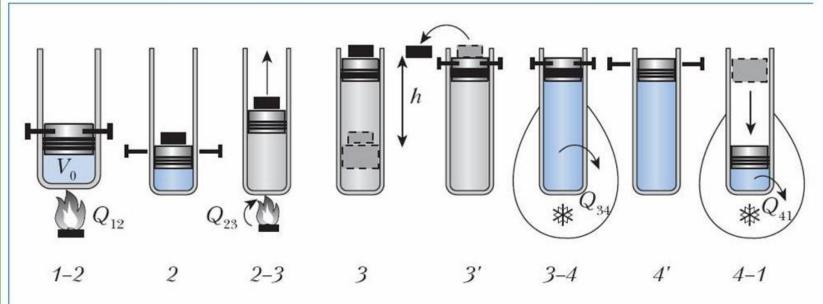
Схема последовательности действий при решении задач по термодинамике (применение первого закона термодинамики)

- 1. Изменение T -> Изменение U
- 2. Изменение V -> Работа газа А
- 3. Определение знака Q
- 4. Расчет Q из первого закона ТД

ТЕПЛОВЫЕ МАШИНЫ. ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ


Циклический тепловой двигатель




Для работы циклического теплового двигателя необходимо:

- 1) наличие рабочего вещества;
- наличие нагревателя, передающего рабочему веществу необходимое для совершения работы количество теплоты;
- 3) наличие холодильника для того, чтобы возвращать рабочее вещество в исходное состояние

КПД двигателя:
$$\eta = \frac{A}{Q_{_{\mathrm{H}}}} = \frac{Q_{_{\mathrm{H}}} - Q_{_{\mathrm{X}}}}{Q_{_{\mathrm{H}}}} < 1$$

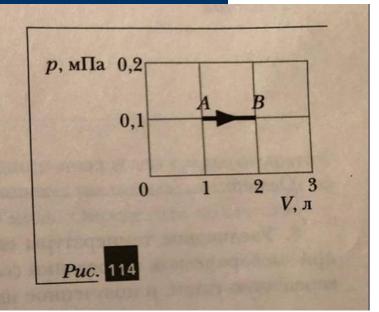


Схема решения задач о тепловых машинах

- 1. График p(V). При этом используются: условие задачи+ ур-е Менделеева-Клапейрона.
- 2. Определяются параметры р, V, T в характерных точках. Полученные значения отмечаются на графике
- 3. Определяются знаки Q на участках графика (если есть возможность определяются Qн и Qх)

5. Изменение параметров неизменного количества одноатомного идеального газа показано рис. 114. Определите работу газа, изменение его внутренней энергии и количество полученной им теплоты.

Решение.

7. Одноатомный идеальный газ в изобарическом процессе получил количество теплоты Q=50 Дж. Определите изменение внутренней энергии газа в этом процессе.

Решение.

Ответ:	

8. Увеличение температуры одного моля идеального одноатомного газа при изобарическом нагревании составило $\Delta T = 20$ К. Определите работу, совершённую газом, и полученное им количество теплоты в этом процессе.

Решение.

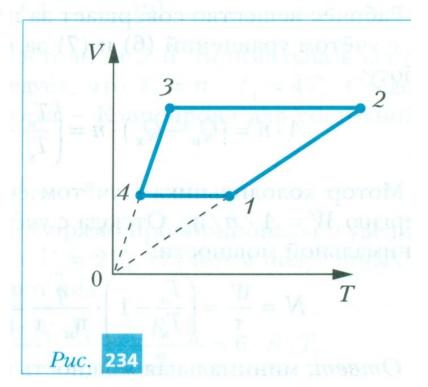
6. Определите количество теплоты, которое должен отдать один моль идеального одноатомного газа при изохорическом уменьшении его давления в 2 раза, если начальная температура газа была равна 127 °C.

Решение.

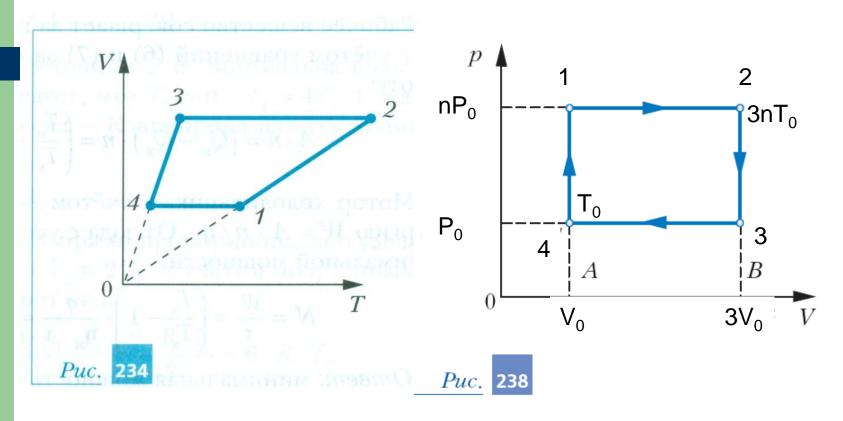
0				0	-		
	50	\mathbf{r}	0				•
0	ш	u	O	C	и	u	

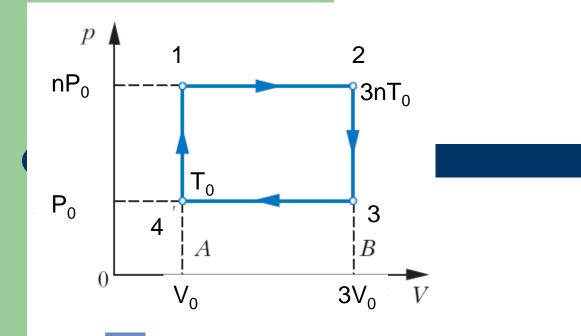
7. При изотермическом расширении один моль азота получил количество теплоты 0,3 кДж. Определите работу газа в этом процессе.

Решение.


11*. Установите соответствие между изопроцессами, происходящими с 1 моль одноатомного идеального газа: 1 - изобарическое нагревание; 2 - изобарическое охлаждение; 3 - изохорическое нагревание; 4 - изохорическое охлаждение; 5 - изотермическое сжатие; 6 - изотермическое расширение; 7 - адиабатическое расширение; 8 - адиабатическое сжатие, и характеристиками указанных процессов: А) над газом совершили работу 40 Дж, и его внугренняя энергия увеличилась на 40 Дж; Б) газ совершил работу 50 Дж и получил количество теплоты 50 Дж; В) газ совершил работу 30 Дж, и его внутренняя энергия уменьшилась на 30 Дж; Г) температура газа уменьшилась на 20 К, и он отдал количество теплоты 249 Дж; Д) над газом совершили работу 60 Дж, и он отдал количество теплоты Е) над газом совершили работу 60 Дж, а его внутренняя энергия уменьши-60 Дж; Ж) температура газа увеличилась на 10 К, и он получил количество теплолась на 90 Дж; И) газ совершил работу 30 Дж, а его внутренняя энергия увеличилась на ты 124,5 Дж; 45 Дж. Заполните таблицу. 8 6 5 3 2 71 .

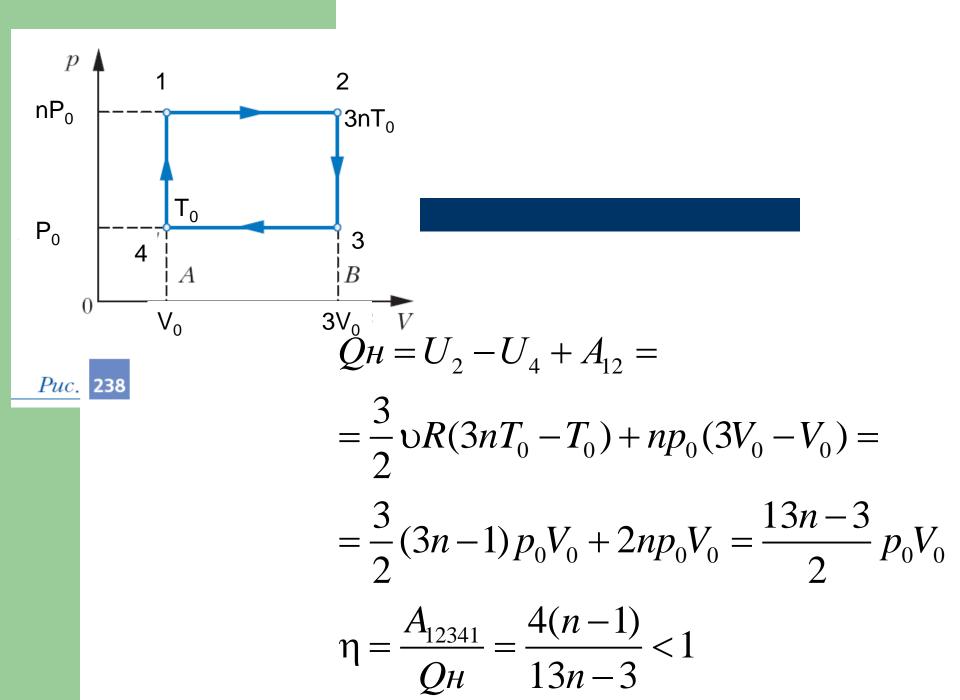
- 4. Определяется полезная работа A за цикл (площадь внутри цикла или по формуле A=Qн-Qx)
- 5. Используется определение КПД тепловой машины:


$$\eta = \frac{A}{QH} = \frac{QH - QX}{QH}$$


Пример решения задачи

Объём V и абсолютную температуру T некоторого количества идеального одноатомного газа изменяют циклически в соответствии с VT-диаграммой, показанной на рис. 234. Определите КПД этого цикла, если отношение тангенсов углов наклона прямых 3–4 и 1–2 к оси температур равно n, а отношение температур газа в состояниях 2 и 4 равно 3n.

Перестраиваем цикл



Puc. 238

$$QH = Q_{41} + Q_{12}$$

$$Qx = Q_{23} + Q_{34}$$

$$A_{12341} = (np_0 - p_0)(3V_0 - V_0) = 2(n-1)p_0V_0$$

Вывод

Путь к успеху — логически последовательное изложение при параллельном заполнении логически структурных таблиц

Результат: осознанные систематизированные знания, т.е. наличие компетенций и освоенные (осознанные) универсальные учебные действия

Спасибо за внимание!

Выходит в свет тетрадь для лабораторных работ для 11 класса

Работа с тетрадями поможет:

- 1. Научиться правильно планировать и проводить эксперимент (правильно проводить измерения и работать с погрешностями)
- 2. Научиться правильно оформлять работу
- 3. Научиться сопоставлять полученные экспериментально результаты с теорией
- 4. Научиться формулировать выводы

Особо полезными (на наш взгляд) помимо фронтальных будут домашние лабораторные работы (в тетради для 9 класса — 10 домашних работ, в тетрадях для 10 и 11 классов — по 15).

В старшей школе домашняя работа, как правило, содержит теоретическую задачу (проблему) и алгоритм ее экспериментальной проверки.

Лабораторная работа № 2Д

Изучение упругих свойств сложных систем

Цели работы: 1) определить экспериментально коэффициенты жёсткости (упругости) простых систем; 2) рассчитать теоретически коэффициенты жёсткости (упругости) сложных систем и проверить полученные результаты экспериментально.

Средства измерения и материалы: три пружинки, две из которых имеют одинаковую длину, но разный диаметр (так, чтобы одну из них можно было вставить внутрь другой), линейка с миллиметровыми делениями, грузик известной массы (например, лёгкий полиэтиленовый пакет с известным количеством воды), достаточно жёсткая проволока (например, из металлических канцелярских скрепок) для изготовления крючков, прикрепляемых к концам шнуров (или пружинок, если у них нет крючков на концах), гвоздь, плоскогубцы.

<u>Внимание!</u> Если требуемые пружинки найти не удалось, то вместо них можно использовать три резиновых шнура длиной 10—15 см каждый.

Дополнительные сведения

Повторите материал, изложенный в § 18, 19 учебника.

Вопросы по теории

	Решите задачу 3 из упражнения § 18 учебника. Сравните полученные результаты с ответами, приведёнными в учебнике. Проведите их анализ. Сформулируйте вывод и запишите его.
	Решение.
_	
_	
	Omeem:
2.	Решите задачу 4 из упражнения § 18 учебника. Сравните полученные результаты с ответами, приведёнными в учебнике. Проведите их анализ. Сформулируйте вывод и запишите его.
	Решение.
	38

_	
_	
_	
	Ответ:
пол	Решите следующие задачи. А) Однородний весткости k разрезали по- зам. Однородный резиновый шнур с коэффициентом жёсткости k разрезали по- ам. Определите коэффициент жёсткости одной из половинок шнура. Проверы- полученное выражение (см. рубрику «Ответы к задачам») и проведите его ана-
	Решение.
_	
_	
_	
_	
_	
_	
	Ответ:
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам чен	 Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- Определите коэффициент жёсткости полученной системы. Проверьте полу-
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам чен	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ.
лам	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- . Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение.
лам	Б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо. Определите коэффициент жёсткости полученной системы. Проверьте получене выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение. Ответ:
лам	б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо- Определите коэффициент жёсткости полученной системы. Проверьте полу- ное выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение. Ответ:
лам	Б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо. Определите коэффициент жёсткости полученной системы. Проверьте получене выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение. Ответ:
лам	Б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо. Определите коэффициент жёсткости полученной системы. Проверьте получене выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение. Ответ:
лам	Б) Однородный резиновый шнур с коэффициентом жёсткости k сложили попо. Определите коэффициент жёсткости полученной системы. Проверьте получене выражение (см. рубрику «Ответы к задачам») и проведите его анализ. Решение. Ответ:

2604.2018 13:34-47 7402pv inidd 38 2604.2018 13:34-47 99

n	maan		

Порядок выполнения

Задание 1. Экспериментальное определение коэффициентов жёсткости (упругости) простых систем (резиновых шнуров или пружин)

<u>Внимание!</u> Если имеется набор пружинок с крючками на концах, то переходите сразу к п. 3. Если такого набора нет, то начните с п. 1.

- От имеющихся резинок с помощью ножниц отрежьте два куска шнура одинаковой длины (приблизительно 10–15 см).
- 2. С помощью проволок изготовьте крючки и прикрепите их к концам всех резинок (двух одинаковой длины и третьей), намотав проволоку на резинки. Следите за тем, чтобы для двух шнуров одинаковой длины расстояние є¹₀ между ближайшими витками проволоки, намотанными на противоположные концы, было одинаковым (рис. 13). При необходимости аккуратно сожмите витки проволоки плоскотубцами для закрепления.

3. Измерьте с помощью линейки расстояние I_a (длину недеформированной системы) для каждого из трёх шнуров (пружинок) и запишите её значение в табл. 13.

Таблица 13

Номер шнура (пружинки)	<i>l</i> _o , см	<i>I</i> ₁ , см	Д∕, см	mg, H	$k_{_{\rm secu}}$, H/cm
1					
2					
3					

 Удерживая гвоздь в руке горизонтально, подвесьте на него первый шнур (пружинку) за один из крючков. На второй крючок этого шнура (пружинки) подвесьте груз известной массы.

<u>Внимание!</u> Деформация шнура не должна превышать 50% его длины. В противном случае используйте груз меньшей массы.

_____ 40

7402pv indd 40 26.04.2018 13:34-47

Задание 2. Экспериментальное определение коэффи	
жёсткости (упругости) сложной системы, состоящей из	з двух
параллельно соединённых резиновых шнуров (пружи	···)

 Если вы работаете с пружинами, то возьмите две пружины одинаковой длины, но разного диаметра. Вставьте одну из них в другую. Если вы работаете с резиновыми шнурами, то сложите два шнура одинаковой длины вместе. Выполните п. 2 из задания 1.

одинаковой длины

- Измерьте с помощью линейки расстояние I₀ (длину недеформированной системы) для полученной системы. Запишите полученное значение в табл. 14.
- Удерживая гвоздь в руке горизонтально, подвесьте на него параллельно соединённые шнуры (пружины) за их крючки. На крючки с противоположной стороны подмесьте груз известной массы.
- 4. Измерьте с помощью линейки длину $I_{\rm l}$ деформированной системы. Запишите измеренное значение в табл. 14.

Таблица 14

<i>l</i> ₀ , см	<i>l</i> ₁ , см	Д/, см	mg, H	$k_{\text{seen}}, \text{H/cm}$	$k_{\text{\tiny reop}}, \mathrm{H/cm}$

- 5. Рассчитайте деформацию растяжения Δl системы. Запишите полученное значение в табл. 14.
- Рассчитайте значение модуля силы тяжести, действующей на подвешенный груз. Запишите полученное значение в табл. 14.
- 7. Вычислите значение коэффициента жёсткости (упругости) $k_{\text{\tiny mem}}$ исследуемой системы. Запишите рассчитанное значение в табл. 14.

- 4

7402pv indd 42 2604.2018 13:34-47

_	
3.	Используя результаты задания 1 и решенной вами задачи из п. 2 рубрики «Во просы по теории», рассчитайте теоретическое значение коэффициента жёстко сти (упругости) $k_{\rm reop}$ исследуемой вами системы. Запишите полученное значение в табл. 14.
9.	Сравните теоретическое и экспериментальное значения коэффициента жёстко сти (упругости) исследуемой вами системы. Сформулируйте вывод и запишите его.
	Задание 3. Экспериментальное определение коэффициента жёсткости (упругости) сложной системы, состоящей из двух последовательно соединённых резиновых шнуров (пружин)
1.	Возьмите два шнура (две пружины) разной длины и соедините их последова тельно.

- 2. Измерьте с помощью линейки расстояние I_0 (длину недеформированной системы) для полученной системы. Запишите значение длины I_0 недеформированной системы, в π_0 45 1.35
- 3. Удерживая гвоздь в руке горизонтально, подвесьте на него за свободный крючок одного из шнуров (одной из пружин) последовательно соединённые шнуры (пружины). На свободный крючок второго шнура (второй пружины) с противоположной стороны подвесьте груз известной массы.

7602prindd 45 2604.2018 13.3447

Задание 4. Экспериментальное определение коэффициентов

 Используя один из шнуров с крючками на концах (одну из пружинок), спланируйте и проведите эксперимент, аналогичный описанному в задании Б) п. 4 (ру-

 Сравните полученный экспериментально результат с результатом, полученным при решении задачи из задания Б) п. 3 (рубрика «Вопросы по теории»).

Представьте полученные результаты на одной координатной оси с указанием доверительных интервалов. Сформулируйте вывод и запишите его.

💮 Для дополнительного изучения

брика «Вопросы по теории»).

Вариант 1

жёсткости (упругости) сложных систем

Лабораторная работа № 8Д

Определение плотности веществ с использованием законов гидростатики

Цель работы: научиться использовать законы гидростатики, определить плотности разных веществ

Теоретическое введение

Повторите содержание §39 учебника.

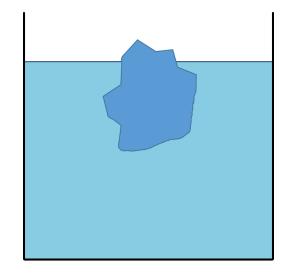
Ответьте на вопросы:

Что называют плотностью вещества?

Сформулируйте закон Архимеда.

Сформулируйте условие плавания тела на поверхности жидкости.

Решите задачу


Десятиклассник Антон проводил эксперименты изучению условия плавания тел. В экспериментах он использовал прозрачную цилиндрическую пластиковую двухлитровую бутылку с отрезанным верхом, пустую цилиндрическую консервную Наполнив банку. пластиковую бутылку водой примерно наполовину, он опустил в воду консервную банку так, чтобы она свободно плавала, и измерил уровень воды h_0 с помощью линейки с миллиметровыми делениями (рис. 12а). После этого с помощью пинцета он поместил в консервную банку груз из однородного материала такой, что банка с грузом продолжала плавать (рис. 126). В результате уровень воды изменился. Антон измерил этот уровень h_1 и записал его значение. Вынимая груз из консервной банки, Антон уронил его в воду. В результате груз утонул, а уровень воды вновь изменился и стал равен h_2 . Антон выдвинул гипотезу, что знание значений уровней h_0 , h_1 , h_2 , диаметров пластиковой бутылки и консервной банки, а также плотности воды позволит ему рассчитать плотность материала, из которого изготовлен утонувший груз. Помогите Антону вывести формулу для расчета искомой плотности. Сравните полученный результат с ответом на стр. и проведите его анализ.

Вариант 2.

Решите задачу

Десятиклассники Алексей, Владимир и Николай проводили эксперимент по таянию льда в воде. Они наполнили кастрюлю водой наполовину и положили в нее кусок льда (см. рис.). После этого среди школьников завязалась дискуссия. Алексей выдвинул гипотезу, что после того, как лед растает, уровень воды в кастрюле повысится. Владимир предположил, что уровень воды должен понизится, а Николай не согласился с одноклассниками. Он утверждал, что уровень воды в кастрюле не изменится. Разрешите спор школьников, решив задачу теоретически.

