О законах сохранения импульса и механической энергии в курсе физики средней школы

П.Ю. Боков, <u>А.В. Грачев</u>, В.А. Погожев, А.М. Салецкий

Москва, 2012

Формулировки законов сохранения

Учебник 1

В замкнутой консервативной системе полная механическая энергия сохраняется (не изменяется с течением времени)

Изменение механической энергии системы равно работе всех непотенциальных сил

Замкнутая система – система тел, для которой равнодействующая внешних сил равна нулю

Результирующая (равнодействующая) сила, действующая на частицу со стороны других тел, равна векторной сумме сил, с которыми каждое из этих тел действует на частицу

Формулировки законов сохранения

Учебник 2

Если на систему тел не действуют внешние силы, то такую систему называют замкнутой, или изолированной

Учебник 3

Полная механическая энергия системы тел, взаимодействующих между собой только силами тяготения и упругости, остается неизменной

Учебник 4

Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и упругости, остается неизменной

Формулировки законов сохранения

Учебник 5

Система тел называется замкнутой, если внешние силы отсутствуют

Учебник 6

В изолированной системе тел, в которой действуют консервативные силы, механическая энергия сохраняется

О системах тел

 Изолированной называют такую систему тел, на которую не действуют другие тела

 Замкнутой называют такую систему тел, для которой равнодействующая всех внешних сил равна нулю

Закон сохранения импульса

 Суммарный импульс замкнутой системы тел сохраняется

Или

 Суммарный импульс системы тел сохраняется неизменным, если эта система является замкнутой

В.И. Николаев «О законах сохранения в разделе «Механика»», Физическое образование в вузах т. 13, №2, 2007

Закон сохранения механической энергии

 Механическая энергия системы тел сохраняется неизменной, если эта система является изолированной и в ней отсутствуют силы трения

Или

 Механическая энергия системы тел сохраняется неизменной, если, во-первых, эта система является изолированной и, кроме того, во-вторых, в ней отсутствуют силы трения

Закон сохранения механической энергии и работа сил

 Механическая энергия системы тел сохраняется неизменной если, вопервых, работа внешних сил равна нулю и, кроме того, во-вторых, работа сил трения внутри системы также равна нулю

Или

 Механическая энергия системы тел сохраняется неизменной если суммарная работа всех внешних сил и сил трения внутри системы равна нулю

ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Импульс материальной точки в ИСО:

$$\vec{p} = m \cdot \vec{v}.$$

Изменение импульса материальной точки в ИСО:

$$\Delta \vec{p} = \vec{F} \cdot \Delta t$$

где \vec{F} — сумма всех действующих на тело сил, Δt — время их действия.

Импульс системы материальных точек:

$$\vec{p} = \vec{p}_1 + \vec{p}_2 + \dots + \vec{p}_N$$

Изменение суммарного импульса системы материальных точек в ИСО:

$$\Delta \vec{p} = (\vec{F}_{1\mathrm{ex}} + \vec{F}_{2\mathrm{ex}} + ... + \vec{F}_{N\mathrm{ex}}) \cdot \Delta t,$$
 где $\vec{F}_{1\mathrm{ex}} + \vec{F}_{2\mathrm{ex}} + ... + \vec{F}_{N\mathrm{ex}} - \mathrm{суммa}$ всех внешних сил.

Закон сохранения импульса

Если сумма всех внешних сил, действующих на тела системы, равна нулю, то импульс системы тел в ИСО не изменяется с течением времени (сохраняется).

Если
$$(\vec{F}_{1\text{ex}} + \vec{F}_{2\text{ex}}) = 0$$
, то $\Delta \vec{p} = 0$.

Закон сохранения проекции импульса

Если проекция на координатную ось ИСО суммы всех внешних сил, действующих на тела системы, равна нулю, то проекция импульса системы тел на эту ось не изменяется с течением времени (сохраняется).

Центром масс системы, состоящей из N материальных точек, называют точку, радиус-вектор которой равен отношению суммы произведений массы каждой точки на её радиус-вектор к сумме масс этих точек:

$$\vec{r}_{\text{\tiny IMM}} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2} + \dots + m_N \vec{r_N}}{m_1 + m_2 + \dots + m_N}.$$

Теорема о движении центра масс системы

Ускорение \vec{a} центра масс системы, состоящей из N материальных точек, в ИСО равно отношению суммы всех внешних сил, действующих на точки этой системы, к сумме масс всех её точек:

$$\vec{a}_{\scriptscriptstyle \rm IIM} = \frac{\vec{F}_{\rm lex} + \vec{F}_{\rm lex} + \dots + \vec{F}_{N\rm ex}}{m_1 + m_2 + \dots + m_N} \,. \label{eq:a_IIM}$$

Обобщающая схема из учебника «Физика-10»

МЕХАНИЧЕСКАЯ РАБОТА. МЕХАНИЧЕ-СКАЯ ЭНЕРГИЯ. ЗАКОНЫ ИЗМЕНЕНИЯ И СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Работой постоянной силы \bar{F} , действующей на материальную точку, при перемещении этой точки на $\Delta \vec{r}$ называют произведение модулей силы и перемещения, умноженное на косинус угла между ними: $A = F \Delta r \cos \alpha$.

Кинетическая энергия материальной точки массой т, движущейся в ИСО со скоростью \vec{v} , равна

$$K = \frac{mv^2}{2}.$$

Теорема о кинетической энергии

Изменение кинетической энергии материальной точки в ИСО равно совершённой над ней работе: $A = K_v - K_0$.

Кинетическая энергия системы материальных точек равна сумме их кинетических энергий: $K = K_1 + K_2 + ... + K_N$.

Изменение кинетической энергии системы тел в ИСО $K_{\kappa} - K_{0}$ равно совершённой над ними работе A, равной работе A_n внутренних потенциальных сил, $A_{\rm TD}$ внутренних сил трения и $A_{\rm ex}$ внешних сил:

$$K_{\rm K} - K_0 = A_{\rm H} + A_{\rm TD} + A_{\rm ex}$$

Потенциальными называют силы, работа которых не зависит от вида траектории, а определяется только начальным и конечным положениями материальной точки, на которую они действуют.

Потенциальной Π называют энергию системы, которая определяется расположением тел системы или их частей и потенциальными силами взаимодействия между ними. Потенциальная энергия:

- 1) системы «тело Земля» $\Pi = mgh$,
- 2) деформированной пружины

$$\Pi = \frac{k\Delta l^2}{2}$$

Изменение потенциальной энергии системы $\Pi_{\nu} - \Pi_{0} = -A_{\mu}$, где A_{μ} – работа внутренних потенциальных сил этой ситемы.

Изменение механической энергии системы тел в ИСО равно сумме работ внутренних сил трения $A_{\rm Tp}$ и внешних сил $A_{\rm ex}$ над телами системы. $(K_{\rm g}+H_{\rm g})-(K_0+H_0)=A_{\rm Tp}+A_{\rm ex},$ или $E_{\rm g}-E_0=A_{\rm Tp}+A_{\rm ex}.$

$$(K_{_{
m K}}+H_{_{
m K}})-(K_{_{
m 0}}+H_{_{
m 0}})=A_{_{
m TP}}+A_{_{
m ex}}$$
, или $E_{_{
m K}}-E_{_{
m 0}}=A_{_{
m TP}}+A_{_{
m ex}}$

Закон сохранения механической энергии

Если суммарная работа внутренних сил трения и внешних сил над телами системы равна нулю, то механическая энергия системы тел в ИСО не изменяется (сохраняется).

Если
$$A_{\mathrm{rp}}$$
 + A_{ex} = 0, то E_{0} = E_{K} (или II_{0} + K_{0} = II_{K} + K_{K}).

Обобщающая схема из учебника «Физика-10»

Заключение

■ Закон сохранения – следствие закона изменения!