Рабочая программа дисциплины

1. Самоорганизация в сложных электродинамических системах.

2. Лекторы.

2.1. д.ф.-м.н., профессор, Поляков Петр Александрович, кафедра общей физики физического факультета МГУ, pa.polyakov@physics.msu.ru, 8-495-9391489.

3. Аннотация дисциплины.

Спецкурс посвящен электрической и магнитной самоорганизации в различных системах актуальных для развития технологий в областях твердотельной электроники, электротехники, магнитных носителей информации, медицинской диагностики. В спецкурсе излагаются общие методы решения задач электростатики для заряженных тел сложной формы. Рассмотрены новые аналитические оригинальные решения, как для связанных зарядов, так и для проводящих жестких и жидких тел. Изучается распределение токов в полосковых проводниках различной конфигурации и при наличии в них дефектов. Исследуется тепловыделение и распределений температуры в таких проводниках. Рассчитываются магнитные поля, порождаемые неоднородным распределением токов в полосковых проводниках различной формы. Изучается возможность управления движением магнитными микро- и наночастицами неоднородными магнитными полями. Излагается методы получения магнитных полей сложной конфигурации с помощью системы сильных постоянных магнитов (сборка Халбаха и другие неоднородные распределения). Разбираются методы получения сверхсильных магнитных полей. Показана возможность повышения чувствительности датчиков Холла с помощью магнитных концентраторов. Рассматривается магнитная доменная самоорганизация в магнитных пленках при наличии локальной неоднородности и механизмы возникновения диффузной доменной границы. Излагаются механизмы динамической самоорганизации вектора намагниченности при воздействии периодического магнитного поля и двух взаимодействующих намагниченных тел.

4. Цели освоения дисциплины.

Овладеть базовыми знаниями основных явлений и методов анализа в статике и динамике электродинамических сложных систем: заряженных твердотельных и жидких тел, намагниченных сплошных сред и структурируемых материалов, электродинамике микро- и наноэлементов устройств электроники, полосковых токовых структур, самоорганизации и управлении комплексами микро- и наночастиц, обладающих электрическим зарядом или вектором намагниченности.

5. Задачи дисциплины.

Приобретение знаний и практических навыков в области физики электрических и магнитных явлений, необходимых для решения актуальных задач в области электроники, электротехники, спинтроники, медицинской физике.

6. Компетенции.

- 7.1. Компетенции, необходимые для освоения дисциплины.
 - М-ПК-1
- **7.2.** Компетенции, формируемые в результате освоения дисциплины. М-ОНК-1, М-ОНК-2, М-ИК-3, М-ПК-1, М-ПК-2, М-ПК-3, М-СПК-6, М-СПК-15, М-СПК-16, М-СПК-17, М-СПК-19.

7. Требования к результатам освоения содержания дисциплины

В результате освоения дисциплины студент должен знать базовые теоретические знания основных методов решения задач магнитной динамики, электростатики и магнитостатики, касающихся систем заряженных и намагниченных тел, актуальных в областях электроники, электротехники, спинтроники, медицинской физике.

8. Содержание и структура дисциплины.

Dava no fiora a	Семестр	Всего	
Вид работы	2		
Общая трудоёмкость, акад. часов	72	72	
Аудиторная работа:	34	34	
Лекции, акад. часов	17	17	
Семинары, акад. часов	17	17	
Лабораторные работы, акад. часов	-	-	
Самостоятельная работа, акад. часов	38	38	
Вид итогового контроля (зачёт, зачёт с оценкой, экзамен)	зачет	зачет	

N pa3-	Наименование раздела	Трудоёмкость (академических часов) и содержание занятий				Форма текущего
дела	ражи	Аудиторная работа			Самостоятельная работа	контроля
		Лекции	Семинары	Лабораторные работы	7	•
1	Электростатика макроскопических тел сложной формы.	I час. Решение прямой задачи электростатики для заряженных тел сложной формы. Примеры нетривиальных аналитических решений: однородно заряженные эллипсоид и прямоугольный параллелепипед. Причины возникновения сингулярности в одномерных и двумерных случаях.	1 час. Решение простейших задач электростатики в одномерном и двумерном случаях. Анализ электрического поля однородно заряженного эллипсоида и прямоугольного параллелепипеда.		2часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
			1 час. Оценка точности расчета в численных моделях. Исследование сингулярности. Конкретное решение модельной задачи электростатики численными методами.		2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	ДЗ, Об, Оп
		I час. Решение задачи электростатики заряженных	1 час. Анализ электрических полей и распределения поверхностной плотности заряда заряженных проводящих тел сложной формы.		3 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
		Электростатическое распыление проводящих жидкостей.	1 час. Нахождение критерия Релея распадной неустойчивости жидкой заряженной капли на две одинаковые и разные капли.		2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
2	Распределение токов в полосковых проводниках сложной формы.	1 час. Общая постановка задачи о распределении токов в полосковых проводниках. Метод конформного отображения,	1 час. Решение упрощенных задач электростатики проводников методом конформного отображения.		2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий	ДЗ, Об, Оп

		комплексный потенциал. Распределение токов в бесконечном полосковом проводнике с изменяющейся скачком шириной. I час. Распределение токов в полосковых проводниках, расходящихся под углом. Отображение Шварца- Кристофеля.	1 час. Вычисление интеграла Шварца- Кристофеля для простых отображений.	по теме. З часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	-
		1 час. Распределение тока в полосковом проводнике с трещиной и прямоугольной перемычкой.	1 час. Анализ особенностей распределения тока в полосковом проводнике с трещиной и прямоугольной перемычкой.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
		I час Тепловыделение и распределение температура в полосковых проводниках сложной формы.	1 час. Решение модельной задачи о распределение температуры при прохождении тока, допускающее аналитическое решение.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
3	Генерация постоянных магнитных полей полосковыми проводникам и постоянными магнитами сложной формы.	I час. Расчет магнитного поля от полосковых проводников сложной формы.	1 час. Примеры расчета напряженности магнитного пол,я создаваемые простейшими распределениями тока.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	Д3, Об, Оп
		1 час. Расчет магнитного поля постоянных магнитов сложной формы: однородно намагниченный эллипсоид, однородно намагниченный прямоугольный параллелепипед. Проблема регуляризации сингулярности.	1 час. Освоение расчета напряженности магнитного поля методом магнитных зарядов и методом векторного потенциала.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
		I час. Постоянные магниты с неоднородным распределением	1 час. Анализ магнитного поля сборки Халбаха для плоского и цилиндрического случаев. Расчет поля неоднородного цилиндрического магнита.	3 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	

		движениями магнитных частиц. Магнитные биосенсоры. Эндоскопическая капсула. Магнитные концентраторы. I час. Сферический концентратор. Прямоугольный концентратор. Увеличение чувствительности	1час. Тренировка вычисления пондеромоторных сил, действующих на малую магнитную частицу (магнитный диполь) со стороны неоднородного поля. 1 час. Анализ усиления магнитного поля концентраторами различной формы. Оценки возможности получения сверхсильных различными методами.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме. 2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.	
4	Самоорганизующиесямагнитные структуры и их взаимодействие с внешним магнитным полем.	в магнитной пленке при наличии локальной цилиндрической неоднородности. Магнитный	I час. Анализ формулы величины искривления доменной полосовой структуры при наличии локальной цилиндрической неоднородности. Оценка экранирующего эффекта полосовой доменной структуры.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме	Д3, Об, Оп
		магнитного поля. Эффект	1 час. Оценка скорости движения плоской доменной границы. Анализ параметров диффузной доменной границы	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме	
		I час. Самоорганизация магнитного	1 час. Анализ нелинейной динамики	3 часа. Освоение и закрепление материала лекций и семинаров.	

действием внешнего	вектора намагниченности. Оценка критерия устойчивого считывания информации магниторезистивной головкой жесткого магнитного диска.	Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.
вращающихся магнитов (взаимодействующих диполей)	1 час. Анализ новых устойчивых состояний двух взаимодействующих магнитов, находящихся во внешнем периодическом поле.	2 часа. Освоение и закрепление материала лекций и семинаров. Работа с дополнительной литературой. Решение контрольных вопросов и заданий по теме.

Предусмотрены следующие формы текущего контроля успеваемости:

- Домашнее задание (ДЗ),
- Обсуждение (Об),
- Опрос (Оп).

9. Место дисциплины в структуре ООП ВПО

- 1. Обязательная дисциплина.
- 2. Вариативная часть, профессиональный блок.
- 3. Дисциплина является теоретическим базисом к овладению современными методами анализа самоорганизация в сложных электродинамических системах. Дисциплина дополняет дисциплины из ООП, посвященные электродинамике сплошных сред, физике конденсированного состояния, физике магнитных явлений.
 - 3.1. Дисциплины и практики, которые должны быть освоены для начала освоения данной дисциплины:
 - дисциплины "Математический анализ", "Дифференциальные уравнения", "Интегральные уравнения и вариационное исчисление" из блока Б-ОН базовой части ООП ВПО,
 - дисциплины "Электродинамика сплошных сред", "Методы математической физики", "Радиофизика" из блока Б-ПРОФ базовой части ООП ВПО.
 - 3.2. Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее: Научно-исследовательская работа из блока "Научно-исследовательская работа" и выпускная квалификационная работа по направлению "Физика" из блока "Итоговая государственная аттестация".

10. Образовательные технологии

Образовательные технологии, используемые при реализации различных видов учебной работы и дающие наиболее эффективные результаты освоения дисциплины:

- дискуссии,
- консультации,
- преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

11. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Текущая аттестация проводится еженедельно. Критерии формирования оценки – посещаемость занятий, активность студентов на лекциях и семинарах, восприятие излагаемого материала, выполнение домашних заданий.

Полный перечень вопросов к зачету:

- 1. Решение прямой задачи электростатики для заряженных тел сложной формы. Примеры нетривиальных аналитических решений: однородно заряженные эллипсоид и прямоугольный параллелепипед. Причины возникновения сингулярности в одномерных и двумерных случаях.
- 2. Приближенные и численные методы решения задачи электростатики. Разложение по мультиполям. Численные методы. Проблема сингулярности и способы регуляризации. Специализированные пакеты и программы решения прикладных задач электростатики.
- 3. Решение задачи электростатики заряженных проводящих тел (оболочек) сложной формы. Примеры имеющихся аналитических решений.
- 4. Зарядовая неустойчивость жидкой проводящей капли. Электростатическое распыление проводящих жидкостей.
- 5. Общая постановка задачи о распределении токов в полосковых проводниках. Метод конформного отображения, комплексный потенциал. Распределение токов в бесконечном полосковом проводнике с изменяющейся скачком шириной.

- 6. Распределение токов в полосковых проводниках, расходящихся под углом. Отображение Шварца-Кристофеля.
- 7. Распределение тока в полосковом проводнике с трещиной и прямоугольной перемычкой.
- 8. Тепловыделение и распределение температура в полосковых проводниках сложной формы.
- 9. Расчет магнитного поля от полосковых проводников сложной формы.
- 10. Расчет магнитного поля постоянных магнитов сложной формы: однородно намагниченный эллипсоид, однородно намагниченный прямоугольный параллелепипед. Проблема регуляризации сингулярности.
- 11. Постоянные магниты с неоднородным распределением намагниченности. Магнитная сборка Халбаха. Цилиндрические и сферические магниты с неоднородными распределениями намагниченности. Рекордный магнит Блоча.
- 12. Управление магнитными полями движениями магнитных частиц. Магнитные биосенсоры. Эндоскопическая капсула. Магнитные концентраторы. Усиление магнитного поля в локальной области намагниченными телами.
- 13. Сферический концентратор. Прямоугольный концентратор. Увеличение чувствительности датчиков Холла с помощью концентраторов. Методы получения сверхсильных магнитных полей. Катушка Битнера. Сверхпроводящие катушки. Взрывные технологии. Катушки с концентратором. Квазистатические магнитные поля при взаимодействии сверхмощных фемтосекундных лазерных импульсов с веществом.
- 14. Самоорганизующаяся магнитная доменная структура в магнитной пленке при наличии локальной цилиндрической неоднородности. Магнитный экранирующий эффект.
- 15. Движение доменной стенки под действием импульса внешнего магнитного поля. Эффект диффузной доменной границы.
- 16. Самоорганизация магнитного момента однородно намагниченной частицы под действием внешнего магнитного поля. Динамика магнитного момента в считывающей магниторезистивной головке жесткого магнитного диска.
- 17. Самоорганизация в ориентационной динамике двух вращающихся магнитов (взаимодействующих диполей) под влиянием внешнего периодического поля. Эффект маятника Капицы.

12. Учебно-методическое обеспечение дисциплины

Основная литература

- 1. Л.Д. Ландау, Е.М. Лифшиц. Теоретическая физика. Т. VIII. Электродинамика сплошных сред. М. «Наука», 1982.
- 2. В. Смайт. Электростатика и электродинамика. М.: ИЛ, 1954.
- 3. В.И. Ивановский, Л.А. Черникова. Физика магнитных явлений. М.: М.: Изд-во МГУ, 1981.

Дополнительная литература

- 1. Гринберг Г.А. Избранные вопросы математической теории электрических и магнитных явлений. М.-Л.: Изд-во АН СССР, 1948.
- 2. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965.
- 3. Эшенфелдер А. Физика и техника цилиндрических магнитных доменов. М.:Мир, 1983
- 4. Лебедев А.И. Физика полупроводниковых приборов. М.: Физматлит, 2008.
- 5. Касаткин С.И., Васильева Н.П., Муравьев А.М. Спинтронные магниторезистивные элементы и приборы на их основе. М.: Изд-во ГКС, 2005.

Периодическая литература

- 1. Поляков П., Русакова Н., Самухина Ю. О новых точных решениях задачи электростатики проводников // Вестник Московского университета. Серия 3. Физика, астрономия. 2014. N 6. С. 57–60.
- 2. Вагин Д.В., Герасименко Т.Н., Поляков П.А. Точное аналитическое выражение для индукции магнитного поля образца прямоугольной формы.// Вестник Московского университета. Серия 3. Физика, астрономия, № 6. 2008. с. 54-56.
- 3. В.Н. Самофалов, Д.П. Белозоров, А.Г. Равлик. Сильные поля рассеяния в системах магнитов с гигантской магнитной анизотропией. УФН. Т183, № 3. 2013, с.287-306. Г.Кольм, А. Фриман. Сильные магнитные поля. УФН. Т88, вып. 4. 1966, с.704-723.
- 4. В. Амеличев, Т. Герасименко, П. Поляков, С. Касаткин. Применение метода конформных преобразований для решения задачи о распределении плотности тока и создаваемого им магнитного поля в полосковом проводнике с прямоугольным вырезом // Журнал вычислительной математики и математической физики. 2014. Т. 54, № 10. С. 1678–1685.
- 5. Вагин Д.В., Касаткин С.И., Поляков П.А. Полосковые концентраторы магнитного поля для магниторезистивных датчиков тока и датчиков холла.//Датчики и системы \ Sensors & Systems. № 12. 2010, с. 25-29.

13. Материально-техническое обеспечение

В соответствии с требованиями п.5.3. образовательного стандарта МГУ по направлению подготовки «Физика».

Лекции по дисциплине проводятся в аудитории им. А.Н. Матвеева (комн. 4-30) физического факультета. Лекционная аудитория обеспечена проекционным оборудованием и компьютером.