Глава 7. Основы кристаллооптики

• Поляризационные приспособления

 Поляризаторы: а) призма Николя; б) призма Аренса; в) призма Глана–Томсона; г) призма Волластона; д) призма Аббе: 1 обыкновенный луч; 2 — необыкновенный луч

Глава 7. Основы кристаллооптики 7.5. Анализ состояния поляризации Analyzer $E_0 \cos \theta$

or trade (cash)

Глава 7. Основы кристаллооптики

• 7.6. Наведенная анизотропия

Воздействие	Тип эффекта	Эффект	Год	Авторы
Механич.	Линейный	Фотоупругос ть	1813 1815	Томас Иоганн Зеебек Дэвид Брюстер
Электрич.	Линейный	Поккельса	1894	Фридрих Карл Поккельс
	Квадратичный	Керра	1875	Джон Керр
Магнитное	Расщепление	Зеемана	1896	Питер Зееман
	Линейный	Фарадея	1846	Майкл Фарадей
	Квадратичный	Коттон- Мутона	1907	Эме Коттон и А. Мутон

Линейный полярископ

Stress-Induced Birefringence in Diamond

The PhotoStress Plus System

Эффекты Поккельса и Керра

- Для кристалла дигидрофосфата калия KH2PO4 (KDP) $\gamma = 3.6 \cdot 10^{-11}$ M/B, для ниобата лития $\gamma = 3.7 \cdot 10^{-10}$ M/B.
- коэффициент Керра. Для жидких кислорода и азота ~10⁻¹⁰ м/В² и
- ~4.10-¹⁰ м/В². Для них же при нормальных условиях — ~4.5.10⁻¹⁴ м/В² и ~3.10⁻¹⁴ м/В²

Эффект Фарадея

Магнитооптический эффект Фарадея на одном слое графена: поворот

плоскости поляризации около 6 градусов в магнитном поле 7 Тесла

Crassee et al., Nature Phys. 7, 48 (2011).

• полупроводник из теллурида ртути,

микрометра это значение возрастало до 45 градусов.

Пленка толщиной около 70 нанометров поворачивала плоскость поляризации света на 15 градусов, а при увеличении толщины до одного

Рассеяние света – возмущение (изменение) световых полей на оптических пространственных неоднородностях среды.

8.1.1. Статистическая теория рассеяния

8.1.2. Формулы Эйнштейна и Рэлея

$$\mathbf{I} = \mathbf{I}_0 \frac{\boldsymbol{\omega}^4}{\left(2\pi c^2 r\right)^2} \left(n - 1\right)^2 \frac{\mathbf{V}}{\mathbf{N}} \sin^2 \vartheta$$

Формула Рэлея

8.1.2. Формулы Эйнштейна и Рэлея

$$\mathbf{I} = \mathbf{I}_0 \frac{\boldsymbol{\omega}^4}{\left(4\pi c^2 r\right)^2} \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_{\mathrm{T}}^2 \mathbf{V} \boldsymbol{\beta}_{\mathrm{T}} k \mathrm{T} \sin^2 \vartheta$$

Формула Эйштейна

Глава 8.Рассеяние света важнейшие следствия для молекулярного рассеяния

1. Индикатриса интенсивности рассеянного света в случае поляризованного падающего света:

- линейно поляризованное излучение –

 $I(r, \varphi, \vartheta) \sim \sin^2 \vartheta$

 $I(r, \varphi, \vartheta) \sim \frac{1 + \cos^2 \vartheta_z}{2}$

естественная поляризация –

Важнейшие следствия для молекулярного рассеяния

. Поляризация рассеянного света.

- от изотропных молекул

$$P(\vartheta_z) = \frac{I_{\perp} - I_{\Pi}}{I} = \frac{\sin^2 \vartheta_z}{1 + \cos^2 \vartheta_z}$$

- от анизотропных молекул наблюдается деполяризация света -

Важнейшие следствия для молекулярного рассеяния

3. Закон Рэлея – I ~ω⁴ ~1/λ⁴

4. Критическая опалесценция

$$\beta_{\rm T} = -\frac{1}{\rm V} \left(\frac{\partial \rm V}{\partial \rm P}\right)_{\rm T} \quad \left(\frac{\partial \epsilon}{\partial \rho}\right)_{\rm T}$$

5. Селективное по частоте рассеяние

$$I_{s} \sim (n-1)^{2}$$

8.2. Рассеяние Рэлея в дисперсных средах

$$I = NVI_1 = I_0 NV \left(\frac{3}{4\pi v^2 r}\right)^2 \omega^4 V_1^2 \left(\frac{\varepsilon_1 - \varepsilon}{\varepsilon_1 + 2\varepsilon}\right)^2 \sin^2 \vartheta$$

Основные особенности:

 индикатриса рассеяния – как в случае молекулярного рассеяния;

2 – поляризация – как в случае молекулярного рассеяния;

3 – закон Рэлея – как в случае молекулярного рассеяния I ~ω⁴ ~1/λ⁴;

4 – сильная зависимость от размера частиц – a^6 ; 5 – сильная зависимость от разности диэлектрических проницаемостей рассеивающего вещества ϵ_1 и окружающей среды ϵ – ($\epsilon_1 - \epsilon$)².

8.3. Рассеяние Ми

 $a \cong \lambda/4$

8.4. Тонкая структура линии Релея.
Рассеяние Мальденштама-Брюллеэна
8.8. Комбинационное (рамановское)
рассеяние света

$$\begin{split} E &= E_0 \cos \omega_0 t \\ P &= \beta E = \beta E_0 \cos \omega_0 t. \quad \omega_m \\ q &= q_0 \cos \omega_m t. \quad Для \quad малых \quad амплитуд, \\ \beta &= \beta_0 + \left(\frac{\partial \beta}{\partial q}\right)_0 q_0 + \dots \\ P &= \beta E_0 \cos \omega_0 t = \beta_0 \cos \omega_0 t + \left(\frac{\partial \beta}{\partial q}\right)_0 q E_0 \cos \omega_0 t = \\ \beta_0 \cos \omega_0 t + \left(\frac{\partial \beta}{\partial q}\right)_0 q_0 E_0 \cos \omega_0 t \bullet \cos \omega_m t = \\ \beta_0 \cos \omega_0 t + \frac{1}{2} \left(\frac{\partial \beta}{\partial q}\right)_0 q_0 E_0 [\cos (\omega_0 + \omega_m) t + \cos (\omega_0 - \omega_m) t] \end{split}$$

CO ₂	H ₂ O	
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	Raman + IR: 3657 cm ⁻¹ Raman + IR: 3756 cm ⁻¹ Raman + IR: 1594 cm ⁻¹	

Dynamic Light Scattering

Броуновское движение и рассеяние

Броуновское движение и рассеяние многими частицами

Dynamic Light Scattering

Гидродинамический диаметр

 $g(\tau) = \langle I(t)I(t+\tau) \rangle$ $g(\tau) = \exp(-k^2 D\tau)$

