$$I(P) = I(k_x, k_y) = \frac{1}{2} |A(k_x, k_y)|^2 = I_0 \left(\frac{l_x l_y}{\lambda b}\right)^2 \operatorname{sinc}^2 \xi_x^1 \operatorname{sinc}^2 \xi_y^1$$

$$\xi_{x,y}^{l} \equiv \frac{k_{x,y} - k_{0x,y}}{2} l_{x,y}$$

$$I(P) = I(k_x) = \frac{1}{2} |A(k_x)|^2 = I_0 \frac{l_x^2}{2\lambda b} \operatorname{sinc}^2 \xi_x^l$$

$$\xi_{x,y}^{1} \equiv \frac{k_{x,y} - k_{0x,y}}{2} l_{x,y}$$

$$I(\xi) = \frac{1}{2} |A(\xi)|^2 = I_0 \left(\frac{\pi R^2}{\lambda b}\right)^2 \left(\frac{2J_1(\xi)}{\xi}\right)^2$$

 $\frac{i}{\lambda} \cdot \frac{\ell^{-ikb}}{b} \iint_{\Sigma_0} A_{\Sigma_0} \ell^{ik} \frac{xx' + yy'}{b} dxdy$ U(P)

Глава 4. Дифракция света

• 4.8.Дифракция на многомерных структурах

Двумерная периодическая структура Дифракция рентгеновских лучей в кристаллах

<u>X-rays</u> • Открыты Рентгеном 1895

Теория дифракци

• 1910 Лауе написал теорию дифракции от решетки

Периодическая структура с различными показателями преломления

Брэгговское отражение

Отражение в фотоном кристалле

 Каждый набор плоскостей действует как зеркало в большом диапазоне углов, которые накладываются полностью.
При этих обстоятельствах никакая радиация не может проникнуть в материал, который является фотонным изолятором. Сильная локализация света Если дефекты введены РС, свет может быть "пойман в ловушку" в пределах дефекта

• Управление волной

Разделитель пучка света

Глава 4. Дифракция света

4.9. Спектральный анализ световых полей.
Спектроскопия с пространственным разложением спектров

Optical Spectrum Analyzer

призма

Оценка. Пусть $\Delta l = 1$ см, d = 0.5 см, $\frac{dn}{d\lambda} = -10^{5}$ м⁻¹, $\lambda \cong 5000$ Å,

тогда:

A

$$\Delta \lambda \sim \lambda \cong 5000 \text{ Å, } \delta \lambda = \frac{\lambda}{\Delta l \left| \frac{\mathrm{dn}}{\mathrm{d\lambda}} \right|} = \frac{5000}{10^{-2} \cdot 10^{5}} = 5 \text{ Å}$$
$$R = \frac{\lambda}{\delta \lambda} = \Delta l \left| \frac{\mathrm{dn}}{\mathrm{d\lambda}} \right| = 10^{-2} \cdot 10^{5} = 10^{3},$$
$$D_{_{\vartheta}} = \frac{\Delta l}{\mathrm{d}} \cdot \frac{\mathrm{dn}}{\mathrm{d\lambda}} = -\frac{1}{0.5} 10^{5} = -2 \cdot 10^{5} \text{ pag/m.}$$

WUNYUNPYOIGA DIMIOUNDERD DAMAGAMENT -----

(а), Фасти-Эберта (б) и Черни-Турнера (в)

Дифракционная решетка

Оценка. Пусть ширина дифракционной решетки L = 10 см, плотность штрихов на единицу ширины n = 10⁴ см⁻¹, используемый порядок дифракции m = 3, тогда:

$$N = Ln = 10^{5}, d = \frac{L}{N} = \frac{1}{n} = 10^{-4} \text{ см},$$
$$\Delta \lambda = \frac{\lambda}{m} \cong \frac{5 \cdot 10^{3}}{3} \cong 1700 \text{ Å},$$
$$\delta \lambda = \frac{\lambda}{Nm} \cong \frac{5 \cdot 10^{3}}{3 \cdot 10^{5}} = 0.017 \text{ Å}, R = Nm = 3 \cdot 10^{5}$$
$$D_{\vartheta} = \frac{m}{d \cos \vartheta} \cong \frac{m}{d} \cong \frac{3}{10^{-4} \cdot 10^{-2}} = 3 \cdot 10^{6} \text{ рад/м}.$$

ΝΦΠ

Рис. 2.27. Схематическое изображение двух спектральных линий при одинаковом разрешении $R_1 = R_2 (D_1 < D_2)$ (a) и одинаковой дисперсии $D_1 = D_2 (R_1 < R_2)$ (b)

	m	Ν	G	R
Призма	0	00	∞	10³
Диф.	2-3	10⁵	250-	2.10^{5}
решетка			150нм	
ИФП	10³-	20-200	0,1-	2·10⁴-
	10⁶		0,001нм	2.10^{8}

Глава 4. Дифракция света

 4.10.Преобразование и синтез световых полей. Понятие о дифракционной теории формирования изображений.

Фурье анализ волнового поля объекта (образуется распределение поля, пропорциональное фурье образу источника – первичное изображение спектр (математически или преобразование Фурье)

Дифракционная плоскость Плоскость трансформации Фурье преобразование объекта!

Фокальная плоскость

Фурье синтез изображения математически преобразование Фурье)

Если модифицировать Анфракционную картину, то

m = 0

m = -1

изображение Пространственная

фильтрация

Два фундаментальных различия между ближнепольной и дальнопольной оптической спектроскопии:

- В БП микроскопии область взаимодействия намного меньше чем в ДП микроскопии
- БП микроскопия имеет супермаленькое расстояние между источником возбуждения и образцом

- Вместо «большого» объектива используется оптическое волокно, которое сканируется относительно поверхности
- Свет попадает в световод через его торец, размер которого меньше длины волны света
- Разрешение определяется размером торца световода (порядка 50нм)

