МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.Ломоносова

им. М.В.Ломоносова ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра общей физики

ПЛАН ИЗУЧЕНИЯ РАЗДЕЛА "ОПТИКА" КУРСА ОБЩЕЙ ФИЗИКИ

ПЛАН ЛЕКЦИЙ

Лектор проф. В.А.Алешкевич.

Лекции 1, 2

Предмет изучения и разделы оптики. Электромагнитная теория света. Уравнения Максвелла и материальные уравнения. Волновое уравнение. Скорость света. Бегущие электромагнитные волны. Плоские и сферические волны. Гармоническая волна и комплексная форма ее представления. Модели реальных световых волн, модулированные волны - световые пучки и импульсы.

Лекция 3

Свойства плоских волн. Ориентация и взаимосвязь полевых векторов. Поляризация света. Поток энергии электромагнитной волны. Вектор Умова-Пойнтинга. Интенсивность света. Энергетика световых пучков и импульсов. Закон [изменения энергии электромагнитного поля. Объемная плотность импульса и давление электромагнитной волны.

Лекция 4

Метод спектрального описания волновых полей. Фурье-анализ и фурье-синтез волновых полей. Преобразования Фурье. Спектральные амплитуда, фаза и плотность. Свойства преобразований Фурье. Соотношение между длительностью импульса и шириной спектра. Теорема Планшереля. Спектральная плотность интенсивности.

Лекция 5

Классическое описание излучения света. Дипольное излучение осциллятора. Затухающий осциллятор как модель излучающего «атома», время радиационного затухания. Естественная форма и ширина линии излучения. Излучение ансамбля статистически независимых осцилляторов. Ударное и доплеровское уширения спектральной линии. Однородное и неоднородное уширения линии.

Лекция 6

Интерференция света. Двухволновая интерференция монохроматических волн. Уравнение интерференции и функция видности. Линейная и угловая ширины интерференционных полос. Интерференция квазимонохроматического света. Спектральное описание, время и длина когерентности. Временное описание, функция временной корреляции.

Лекция 7

Взаимосвязь спектра и функции временной корреляции, понятие о фурьеспектроскопии. Степень временной когерентности и функция видности. Пространственная когерентность. Угол и радиус когерентности. Звездный интерферометр Майкельсона. Функция пространственно-временной корреляции. Степень пространственно-временной когерентности и функция видности.

Лекция 8

Методы получения интерференционных картин - деление волнового фронта и деление амплитуды, реализации методов. Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Многоволновая интерференция. Формулы Эйри. Интерферометр Фабри-Перо и пластинка Люммера-Герке. Интерференционные фильтры и зеркала.

Лекция 9

Дифракция света. Принципы Гюйгенса и Гюйгенса-Френеля. Дифракционный интеграл Френеля. Теорема обратимости Гельмгольца. Принцип дополнительности Бабине. Метод зон Френеля. Радиус и площадь зоны Френеля. Число Френеля. Метод векторных диаграмм. Зонные пластинки и линза.

Лекшия10

Простейшие дифракционные задачи. Дифракция на круглом отверстии и круглом экране, спираль Френеля. Пятно Пуассона. Дифракция на крае полубесконечных экрана и щели, спираль Корню. Ближняя и дальняя зоны дифракции. Дифракционная длина. Дифракционная расходимость пучка в дальней зоне. Фокусировка света, как дифракционное явление.

Лекция 11

Понятие о теории дифракции Кирхгофа. Дифракционный интеграл Френеля-Кирхгофа. Приближения Френеля и Фраунгофера. Дифракция в дальней зоне как пространственное преобразование Фурье. Угловой спектр пучка. Связь ширины спектра с поперечными размерами пучка.

Лекция 12

Дифракция Фраунгофера на пространственных структурах: прямоугольном отверстии, круглом отверстии и щели. Функция пропускания. Амплитудные и фазовые дифракционные решетки. Распределение интенсивности в дифракционной картине, интерференционная функция. Дифракция на акустических волнах.

Лекция 13

Спектральный анализ световых полей. Спектроскопия с пространственным разложением спектров. Дисперсионные, дифракционные и интерференционные спектральные приборы. Их основные характеристики – аппаратная функция, угловая и линейная дисперсии, разрешающая способность и область дисперсии.

Лекция 14

Преобразование и синтез световых полей. Понятие о дифракционной теория формирования изображений. Роль дифракции в приборах, формирующих изображение: линзе, телескопе и микроскопе. Специальные методы наблюдения фазовых объектов: метод темного поля и метод фазового контраста. Запись и восстановление светового поля. Голография.

Лекция 15

Распространение света в веществе. Поляризуемость молекулы и среды. Дисперсия света. Классическая электронная теория дисперсии. Поглощение света (закон Бугера). Зависимости показателя преломления и коэффициента поглощения от частоты. Дисперсионная формула Зелмеера. Фазовая и групповая скорости. Формула Рэлея. Дисперсионное расплывание волновых пакетов. Дисперсионная длина.

Лекция 16

Оптические явления на границе раздела изотропных диэлектриков. Законы отражения и преломления света. Формулы Френеля. Эффект Брюстера и явление полного внутреннего отражения. Энергетические соотношения при преломлении и отражении света.

Лекция 17

Распространение света в анизотропных средах. Описание диэлектрических свойств анизотропных сред. Плоские электромагнитные волны в анизотропной среде. Структура световой волны, фазовая и лучевая скорости. Уравнения Френеля для фазовых и лучевых скоростей. Эллипсоид лучевых скоростей и лучевая поверхность. Одноосные и двухосные кристаллы.

Лекпия 18

Оптические свойства одноосных кристаллов. Обыкновенный и необыкновенный лучи. Отрицательные и положительные кристаллы. Построение Гюйгенса. Двойное лучепреломление и поляризация света. Поляризационные приборы, четвертьволновая и полуволновая пластинки. Анизотропия оптических свойств, наведенная механической деформацией, электрическим и магнитным полями.

Лекция 19

Рассеяние света. Излучение элементарного рассеивателя. Индикатриса рассеяния, поляризация рассеянного света и закон Рэлея. Молекулярное рассеяние. Элементы статистической теории рассеяния, формулы Эйнштейна и Рэлея. Основные особенности молекулярного рассеяния. Рассеяние света в мелкодисперсных и мутных средах.

Лекция 20

Излучение света. Тепловое излучение. Излучательная и поглощательная способности вещества и их соотношение. Модель абсолютно черного тела. Формула Рэлея-Джинса. Ограниченность классической теории излучения. Закон Стефана-Больцмана. Формула смещения Вина. Формула Планка.

Лекция 21

Основные представления квантовой теории излучения света атомами и молекулами. Квантовые свойства атомов, постулаты Бора. Взаимодействие двухуровневой системы с излучением. Типы радиационных переходов. Коэффициенты Эйнштейна. Формула Планка. Многоуровневые системы. Структура энергетических уровней атомов, молекул и твердых тел. Явление люминесценции.

Лекция 22

Резонансное усиление света. Инверсная заселенность энергетических уровней и коэффициент усиления. Получение инверсной заселенности в трехуровневой системе. Ширина линии усиления. Лазеры — устройство и принцип работы. Принципиальная схема лазера. Условия стационарной генерации (баланс фаз и амплитуд). Продольные и поперечные моды. Спектральный состав излучения лазера. Синхронизация мод, генерация сверхкоротких импульсов.

Лекшия 23

Нелинейные оптические явления. Поляризация среды в поле высокоинтенсивного лазерного излучения. Среды с квадратичной нелинейностью, оптическое детектирование и генерация второй гармоники. Среды с кубической нелинейностью, самофокусировка волновых пучков и генерация третьей гармоники.

ПЛАН СЕМИНАРОВ

Семинары 1, 2.

Геометрическая оптика. Отражение и преломление света. Зеркала, линзы и оптические системы. Построение изображений. Схемы оптических приборов. Кардинальные элементы центрированной оптической системы.

Семинар 3.

Уравнения Максвелла и материальные уравнения. Волновое уравнение. Электромагнитные волны и их основные свойства. Комплексная форма представления волны. Плоская и сферическая бегущие волны.

Семинар 4.

Стоячая электромагнитная волна: ориентация и взаимосвязь полевых векторов, узлы и пучности. Перенос энергии в стоячей волне. Стоячая волна в лазере. Плотность потока энергии и объемная плотность импульса электромагнитных волн. Интенсивность и давление света.

Семинар 5.

Поляризация света: линейная, круговая и эллиптическая поляризация. Закон Малюса. Методы получения и анализа поляризованного света. Естественно поляризованный свет.

Семинар 6.

Преобразования Фурье. Спектральные амплитуда и фаза. Соотношение между длительностью импульса и шириной спектра. Спектры и спектральная плотность интенсивности различных сигналов (прямоугольный импульс, затухающий квазигармонический сигнал).

Семинар 7.

Контрольная работа.

Семинары 8, 9.

Двухволновая интерференция. Уравнение интерференции. Схема Юнга. Анализ простейших интерференционных схем (бизеркало и бипризма Френеля, билинза Бийе, зеркало Ллойда).

Семинар 10.

Интерференция квазимонохроматического света на примере схемы Юнга. Функция видности. Длина и время когерентности. Анализ спектральных характеристик источника по интерференционной картине. Временное описание, функция временной корреляции.

Семинар 11.

Интерференция света от протяженных квазимонохроматических источников на примере схемы Юнга. Пространственная когерентность, радиус когерентности. Зависимость видности интерференционной картины от размеров источника.

Семинар 12.

Интерференция в тонких пленках. Полосы равной толщины и равного наклона, их локализация. Наблюдение интерференционной картины с помощью плоскопараллельной пластины.

Семинар 13.

Многоволновая интерференция. Интерферометр Фабри-Перо. Формула Эйри. Пластинка Люммера-Герке.

Семинар 14.

Контрольная работа.

Семинары 15, 16.

Дифракция света. Принцип Гюйгенса-Френеля. Дифракция на круглом отверстии, спираль и зоны Френеля. Дифракция на непрозрачном диске, пятно Пуассона. Зависимость интенсивности на оси симметрии от радиуса круглого отверстия и непрозрачного диска. Зонные пластинки и линза. Ближняя и дальняя зоны дифракции. Дифракционная длина.

Семинары 17, 18.

Дифракционный интеграл Френеля-Кирхгофа. Приближения Френеля и Фраунгофера. Дифракция Фраунгофера на щели, прямоугольном и круглом отверстиях. Функция пропускания. Дифракция в дальней зоне как пространственное преобразование Фурье. Угловой спектр пучка. Связь ширины спектра с поперечными размерами пучка. Амплитудная дифракционная решетка. Распределение интенсивности в дифракционной картине.

Семинары 19, 20.

Основные характеристики дисперсионных, дифракционных и интерференционных спектральных приборов — аппаратная функция, угловая и линейная дисперсии, разрешающая способность и область дисперсии.

Семинар 21.

Контрольная работа.

Семинар 22.

Дисперсия света. Классическая электронная теория дисперсии. Поглощение света (закон Бугера). Зависимости показателя преломления и коэффициента поглощения от частоты. Фазовая и групповая скорости. Формула Рэлея.

Семинар 23.

Оптические явления на границе раздела изотропных диэлектриков. Законы отражения и преломления света. Формулы Френеля. Эффект Брюстера и явление полного внутреннего отражения. Энергетические соотношения при преломлении и отражении света.

Семинары 24, 25.

Распространение света в анизотропных средах. Структура световой волны, фазовая и лучевая скорости. Эллипсоид лучевых скоростей и лучевая поверхность. Оптические свойства одноосных кристаллов. Обыкновенный и необыкновенный лучи. Построение Гюйгенса.

Семинары 26, 27.

Двойное лучепреломление и поляризация света. Интерференция поляризованного света. Поляризационные приборы, четверть волновая и полуволновая пластинки. Получение и анализ эллиптически поляризованного света.

Семинар 28.

Контрольная работа.

ЛИТЕРАТУРА

Основная

- 1. Алешкевич В.А. ОПТИКА. М. "Физматлит". 2010.
- 2. Матвеев А.Н. ОПТИКА. М. "Высшая школа". 1985.
- 3. Сивухин Д.В. Общий курс физики. Том 4. ОПТИКА. 3-е изд. М. "Физматлит". 2005.
- 4. Ландсберг Г.С. ОПТИКА. 5-е изд., М., "Наука". 1976.
- 5. Ахманов С.А., Никитин С.Ю. ФИЗИЧЕСКАЯ ОПТИКА. М. МГУ, 1998.

Дополнительная

- 1. Борн М., Вольф В. ОСНОВЫ ОПТИКИ. М.. "Наука". 1970.
- 2. Крауфорд Ф. ВОЛНЫ. 3-е изд. М. "Наука".1984.

Задачники

- 1. Быков А.В., Митин И.В., Салецкий А.М. Оптика. Методика решения задач. М. Физический факультет МГУ. 2010.
- 2. Сборник задач по общему курсу физики. Оптика (под ред. Д.В.Сивухина). 4-е изд. М. "Наука". 1977.
- 3. Иродов И.Е. Задачи по общей физике. 2-е изд. М. "Наука". 1988.