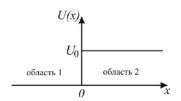
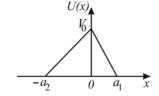
Задачи к экзамену по курсу «Введение в квантовую физику»

- **1.** Считая Солнце и Землю абсолютно черными телами, находящимися в состоянии теплового равновесия, оцените температуру Земли T_1 . Средний радиус земной орбиты $r=1,5\cdot 10^{11}~{\rm M}$, температура на поверхности Солнца $T=6000~{\rm K}$, радиус Солнца $R=7\cdot 10^8~{\rm M}$.
- **2.** Исходя из формулы Планка для спектральной плотности $\, \rho_{\scriptscriptstyle \varpi}(T) \,$, получите выражение для спектральной плотности $\, \rho_{\scriptscriptstyle \lambda}(T) \,$.
- **3.** Найдите угол отдачи ϕ электрона в экспериментах Комптона, считая известными энергию падающего фотона $\hbar\omega_0$ и угол рассеяния θ .
- **4.** При увеличении напряжения на рентгеновской трубке в $\eta=1,5\,$ раза длина волны коротковолновой границы сплошного рентгеновского спектра изменилась на $\Delta\lambda=26\,$ пм . Найти первоначальное напряжение на трубке.
- **5.** Свободная частица массы m движется со скоростью υ . Найти фазовую и групповую скорость волнового пакета, характеризующего эту частицу. Рассмотреть релятивистский и нерелятивистский случай.
- **6.** Ширина волнового пакета, описывающего свободный нерелятивистский электрон, увеличилось в n=10 раз за время $\tau \approx 10^{-15}$ секунды. Используя соотношение неопределенностей, найти начальную ширину волнового пакета.
- **7.** Параллельный пучок электронов, движущихся со скоростью $\upsilon=1.5\cdot10^6\,$ м/с , через узкую щель падает нормально на экран, расположенный на расстоянии $L=0.1\,$ м от щели. Определить ширину щели d, при которой ширина её изображения на экране будет минимальной.
- **8.** Пучок электронов, ускоренных разностью потенциалов $U=500~{\rm kB}$, попадает на тонкую поликристаллическую фольгу. На экране, отстоящем на $L=20~{\rm cm}$ от фольги, наблюдается дифракционная картина в виде колец. Определить период решетки в материале фольги, если известно, что радиус первого кольца равен $r_{\rm i}=0.8~{\rm mm}$.
- **9.** Найдите разность длин волн $\Delta\lambda$ между головными линиями серии Бальмера и Лаймана для ионов гелия ${}^4{
 m He}^+$.
- **10.** Найти собственные значения и собственные функции оператора импульса \hat{p}_x в координатном представлении.
- **11.** Найти собственные значения и собственные функции оператора координаты \hat{x} в координатном представлении.
- **12.** Пусть волновая функция частицы в некоторый момент времени имеет в сферических координатах вид $\psi(r,\theta,\varphi) = \chi(r,\theta)\cos^2\varphi$. Какие значения проекции момента импульса L_z частицы могут быть измерены, и с какой вероятностью?
- 13. Волновая функция частицы в некоторый момент времени имеет вид

$$\psi(x) = \begin{cases} \frac{1}{\sqrt{L}}, & x \in \left[-\frac{L}{2}, \frac{L}{2} \right] \\ 0, & x \in \left(-\infty, -\frac{L}{2} \right] \cup \left[\frac{L}{2}, \infty \right) \end{cases}.$$


Найти дисперсию координаты $D_{\scriptscriptstyle x}$.

14. Волновая функция частицы в некоторый момент времени имеет вид


$$\psi(x) = \begin{cases} \frac{1}{\sqrt{L}}, & x \in \left[-\frac{L}{2}, \frac{L}{2} \right] \\ 0, & x \in \left(-\infty, -\frac{L}{2} \right] \cup \left[\frac{L}{2}, \infty \right) \end{cases}.$$

Найти волновую функцию частицы в импульсном представлении $\psi(p)$ в тот же момент времени.

- **15.** Частица массы m находится в двумерном потенциале $U(x,y) = m\omega^2(x^2 + y^2)/2$ (двумерный гармонический осциллятор). Найти уровни энергии E частицы и кратности их вырождения g.
- **16.** Свободная нерелятивистская частица массы m с энергией E движется из минус бесконечности в положительном направлении оси x. В точке x=0 потенциальная энергия частицы скачком увеличивается на величину U_0 ($E>U_0$ см. рис). Вычислить коэффициенты отражения R и прохождения T частицы.

17. Найти коэффициент прохождения нерелятивистской частицы массы m через треугольный потенциальный барьер, высота которого V_0 , а ширина основания a (см. рис.). Энергия частицы $0 < E \ll V_0$. Вычислить только экспоненциальный множитель.

- **18.** Найти собственные значения и собственные векторы оператора проекции спина \hat{s}_z .
- **19.** Найти расщепление ΔE уровней энергии свободного электрона в однородном стационарном магнитном поле с индукцией B.
- **20.** Концентрация свободного нерелятивистского электронного (неполяризованного) газа равна n . Найти энергию \mathcal{E}_F и импульс p_F Ферми электронного газа.
- **21.** Энергия Ферми свободного нерелятивистского электронного (неполяризованного) газа равна ϵ_F . Найти среднюю энергию электронов \overline{E} при нулевой температуре ($T=0\,$ K).
- **22.** Концентрация свободного нерелятивистского электронного (неполяризованного) газа равна n . Оценить молярную теплоемкости C_V электронного газа при $kT\ll \varepsilon_F$.
- **23.** Получить формулу Планка для спектральной плотности энергии $ho_{\scriptscriptstyle \varpi}(T)$ исходя из распределения Бозе-Эйнштейна.
- **24.** Найти температуру Дебая $T_{\scriptscriptstyle D}$ для акустических фононов одной поляризации, если известна скорость звука $c_{\scriptscriptstyle 38}$ в кристалле и концентрация атомов n .
- **25.** Найти теплоемкость $C_{_V}$ кристалла, считая, что фононы имеют линейный закон дисперсии $\omega = c_{_{\mathfrak{I}\!\mathsf{R}}} k$. Рассмотреть случай малых температур $T \ll T_{_D}$.
- **26.** Найти температуру Дебая $T_{\scriptscriptstyle D}$ двумерного кристалла, считая закон дисперсии фононов в кристалле линейным. Известна скорость звука $c_{\scriptscriptstyle 3B}$ в кристалле и поверхностная концентрация атомов n .
- **27.** Поверхностная концентрация свободного двумерного нерелятивистского электронного (неполяризованного) газа равна n_2 . Найти энергию $\mathcal{E}_F^{(2D)}$ и импульс $p_F^{(2D)}$ Ферми электронного газа. при нулевой температуре ($T=0\,$ K).
- **28.** Энергия Ферми свободного двумерного нерелятивистского электронного (неполяризованного) газа равна $\mathcal{E}_F^{(2D)}$. Найти его среднюю кинетическую энергию $\overline{E}^{(2D)}$ при нулевой температуре ($T=0\,$ K).