Здесь представлены слайды, которые показывались на лекциях по курсу «Введение в квантовую физику». Представленные на слайдах материал не является исчерпывающим и не отражает полного содержания курса! Поэтому данные слайды не могут являться основой для подготовки к экзамену!!! На слайдах могут быть опечатки, будьте внимательны.

Список литературы (часть 1 и 2):

- Вихман Э. Квантовая физика. (Берклеевский курс физики, т.4.) М: Наука. 1974.
- Иродов И.Е. Квантовая физика. Основные законы. М: Бином, 2004. 256 с.
- Матвеев А.Н. Атомная физика. М: Высшая школа, 1989. 439 с.
- Фейнман Р. Фейнмановские лекции по физике, т.8, М: Мир, 1967. 272 с.
- Фейнман Р. Фейнмановские лекции по физике, т.9, М: Мир 1967. 260 с.

Излучение абсолютно черного тела

Формула Планка:

Постоянная Планка: $\hbar = 1,054 \cdot 10^{-34}$ Дж · с

Закон смещения Вина:

$$\lambda_{\max}T = b = 0.2014 \frac{2\pi\hbar c}{k} = 2,897 \cdot 10^{-3} \text{ M} \cdot K$$

Закон Стефана-Больцмана:

$$\rho = \alpha T^4$$
 $\alpha = \frac{\pi^2 k^4}{15\hbar^3 c^3} = 7,57 \cdot 10^{-16} \ \text{Дж} \cdot \text{м}^{-3} \cdot \text{K}^{-4}$

Внешний фотоэффект

Законы фотоэффекта:

1. Существует граничная частота света, ниже которой для данного материала катода фотоэффект отсутствует, независимо от интенсивности падающего света и продолжительности облучения катода.

2. Электроны покидают поверхность катода с кинетическими энергиями от нуля до максимальной энергии, которая не зависит от интенсивности падающего света и линейно зависит от частоты.

3. При фиксированной частоте излучения фототок насыщения прямо пропорционален интенсивности падающего света.

Формула Эйнштейна:

 $\hbar\omega = T_{\rm max} + 1$

Эффект Комптона

Если электрон покоится:

$$\Delta \lambda = \lambda_{K} \left(1 - \cos \theta \right)$$

$$\lambda_{K} = \frac{h}{mc} = 2,43 \cdot 10^{-12} \text{ M}$$

Если электрон движется:

$$\Delta \lambda = \lambda_0 \frac{\left(p_{e0} + \frac{h}{\lambda_0}\right)c}{\sqrt{\left(mc^2\right)^2 + \left(p_{e0}c\right)^2} - p_{e0}c} (1 - \cos\theta)$$

Тормозное рентгеновское излучение

Частица в прямоугольной бесконечно глубокой яме

Частица в прямоугольной бесконечно глубокой яме

$$\Psi_1(x,t) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right) \exp\left(-\frac{iE_1 t}{\hbar}\right) \qquad x \in (0,L) \qquad E_1 = \frac{\pi^2 \hbar^2}{2mL^2}$$

Вычисление среднего значения и дисперсии координаты:

$$\overline{x} = \int_{-\infty}^{+\infty} \Psi^* \hat{x} \Psi dx = \frac{L}{2} \qquad \left\langle x^2 \right\rangle = \int_{-\infty}^{+\infty} \Psi^* \hat{x}^2 \Psi dx = L^2 \left(\frac{1}{3} - \frac{1}{2\pi^2}\right)$$
$$D_x = \left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 = L^2 \left(\frac{1}{12} - \frac{1}{2\pi^2}\right)$$

Вычисление среднего значения и дисперсии импульса:

$$\overline{p} = \int_{-\infty}^{+\infty} \Psi^* \hat{p} \Psi dx = 0 \qquad \left\langle p^2 \right\rangle = \int_{-\infty}^{+\infty} \Psi^* \hat{p}^2 \Psi dx = \frac{\pi^2 \hbar^2}{L^2} \qquad D_p = \left\langle p^2 \right\rangle - \left\langle p \right\rangle^2 = \frac{\pi^2 \hbar^2}{L^2}$$

Проверка соотношения неопределенностей Гейзенберга:

$$\delta x \delta p = \sqrt{D_x D_p} = \hbar \sqrt{\frac{\pi^2}{12} - \frac{1}{2}} \approx 0,57\hbar > \frac{\hbar}{2}$$

Частица в прямоугольной бесконечно глубокой яме

Переход к импульсному представлению:

$$\psi(p) = \langle p | \psi \rangle = \int_{-\infty}^{+\infty} \langle p | x \rangle \langle x | \psi \rangle dx = \int_{-\infty}^{+\infty} \psi_p^*(x) \psi(x) dx =$$
$$= \frac{1}{\sqrt{2\pi\hbar}} \sqrt{\frac{2}{L}} \int_{0}^{L} \sin\left(\frac{\pi x}{L}\right) \exp\left(-\frac{ipx}{\hbar}\right) dx = \frac{2\hbar\sqrt{\pi L\hbar}}{\left(\pi^2\hbar^2 - p^2L^2\right)} \cos\left(\frac{pL}{2\hbar}\right) \exp\left(-i\frac{pL}{2\hbar}\right)$$
$$\rho(p) = |\psi(p)|^2 = \frac{4\pi\hbar^3L}{\left(\pi^2\hbar^2 - p^2L^2\right)^2} \cos^2\left(\frac{pL}{2\hbar}\right)$$

Частица в нестационарном состоянии:

$$\Psi(x,t) = \frac{1}{\sqrt{2}}\psi_1(x)\exp\left(-\frac{i}{\hbar}E_1t\right) + \frac{i}{\sqrt{2}}\psi_2(x)\exp\left(-\frac{i}{\hbar}E_2t\right)$$

$$\overline{x} = \int_{-\infty}^{+\infty} \Psi^* \hat{x} \Psi dx \qquad \overline{x}(t) = L \left[\frac{1}{2} - \frac{16}{9\pi^2} \sin\left(\frac{E_2 - E_1}{\hbar}t\right) \right]$$

Частица в прямоугольной яме конечной глубины

$w'' - a^2 w - 0$ $a = \frac{\sqrt{2m(U_0 - E)}}{4m(U_0 - E)}$
$\psi_{1,3} - q \ \psi_{1,3} - 0 \qquad q \qquad \hbar$
$\psi_1(x) = C_1 e^{qx}$ $\psi_3(x) = C_3 e^{-qx}$
$\psi_2'' + k^2 \psi_2 = 0 \qquad \qquad k = \frac{\sqrt{2mE}}{1}$
$\psi_2(x) = C_2 \sin(kx + \delta) \qquad \hbar$
$\psi_1(0) = \psi_2(0) \implies C_1 = C_2 \sin \delta$
$\psi_2(L) = \psi_3(L) \implies C_3 e^{-qL} = C_2 \sin(kL + \delta)$
$\psi'_1(0) = \psi'_2(0) \implies qC_1 = kC_2 \cos \delta$
$\psi'_2(L) = \psi'_3(L) \implies -qC_3e^{-qL} = kC_2\cos(kL + \delta)$
$\cos \xi = \pm \gamma \xi$ $\xi \in \left[0, \frac{\pi}{2}\right] \cup \left[\pi, \frac{3\pi}{2}\right] \cup \dots$
$\sin \xi = \pm \gamma \xi$ $\xi \in \left[\frac{\pi}{2}, \pi\right] \cup \left[\frac{3\pi}{2}, 2\pi\right] \cup \dots$
$\xi = \frac{kL}{2} \qquad \gamma = \frac{\hbar}{L} \sqrt{\frac{2}{mU_0}} \qquad E_n = \frac{2\hbar^2 \xi_n^2}{mL^2} \qquad n = 1, \dots, n_{\text{max}}$

Частица в прямоугольной яме конечной глубины

Предельный случай бесконечно глубокой ямы:

$$U_0 \to \infty \implies \gamma \to 0 \implies \xi_n \to \frac{\pi n}{2} \implies E_n = \frac{2\hbar^2 \xi_n^2}{mL^2} \to \frac{\pi^2 \hbar^2}{2mL^2} n^2$$

Предельный случай «мелкой» ямы:

Единственный уровень энергии:

$$E \approx U_0 \left(1 - \frac{mL^2}{2\hbar^2} U_0 \right)$$

Частица в прямоугольной яме конечной глубины

Рис. 2. Энергетические зоны на границе двух полупроводников – гетероструктуре. E^c и E^v – границы зоны проводимости и валентной зоны, E_g – ширина запрещенной зоны. Электрон с энергией меньше E_2^c (уровень показан красным цветом) может находиться только справа от границы

Рис. 3. Квантовая яма, сформированная в слое полупроводника с узкой запрещенной зоной, заключенном между двумя полупроводниками, обладающими более широкой запрещенной зоной

Рис. 6. Энергетическая схема лазера на квантовой яме

Гармонический осциллятор

Сначала ищем асимптотическое решение при $\xi \to \pm \infty$

$$\psi_{ass}''(\xi) = \xi^2 \psi_{ass}(\xi)$$

$$\psi_{ass}(\xi) = e^{-\xi^2/2}$$

Теперь ищем решение в виде

$$\psi(\xi) = \chi(\xi) e^{-\xi^2/2}$$

$$\chi'' - 2\xi\chi' + 2n\chi = 0 \qquad 2n = \frac{2E}{\hbar\omega} - 1$$

Это уравнение имеет решения в виде полиномов только если

$$n = 0, 1, 2, 3, ...$$
 Тогда $E_n = \hbar \omega \left(\frac{1}{2} + n\right)$

Гармонический осциллятор

Основное состояние:

$$\chi_0(\xi) = a_0 = \text{const}$$
 $\left(\frac{2E_0}{\hbar\omega} - 1\right)a_0 = 0 \implies E_0 = \frac{\hbar\omega}{2}$

$$\Psi_0(\xi) = a_0 e^{-\xi^2/2}$$

$$1 = \int_{-\infty}^{+\infty} |\psi_0(\mathbf{x})|^2 d\mathbf{x} = a_0^2 \sqrt{\frac{\hbar}{m\omega}} \int_{-\infty}^{+\infty} e^{-\xi^2} d\xi = a_0^2 \sqrt{\frac{\pi\hbar}{m\omega}} \implies a_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}$$
$$\psi_0(\mathbf{x}) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \exp\left[-\frac{m\omega}{2\hbar}x^2\right]$$
$$\rho_0(\mathbf{x}) = |\psi_0(\mathbf{x})|^2 = \sqrt{\frac{m\omega}{\pi\hbar}} \exp\left[-\frac{m\omega}{\hbar}x^2\right] - \mathbf{pacupe}_{\mathbf{z}} = \mathbf{pacupe}_{\mathbf{z}} = \frac{\pi}{\pi} \int_{-\infty}^{\infty} \sigma^2 = \frac{\hbar}{2m\omega}$$

Частица в б-образном потенциале

$$U(x) = A\delta(x) \qquad A = \text{const} < 0 \qquad E = -|E|$$

$$\psi'' + 2q\delta(x)\psi - k^{2}\psi = 0 \qquad k = \frac{\sqrt{2m|E|}}{\hbar} \qquad q = \frac{m|A|}{\hbar^{2}}$$

$$x \in (-\infty, -\varepsilon) \cup (\varepsilon, \infty) \qquad \psi'' - k^{2}\psi = 0 \qquad \psi_{1}(x) = C_{1}e^{kx} \qquad \psi_{3}(x) = C_{3}e^{-kx}$$

$$\psi_{1}(0) = \psi_{2}(0) = \psi_{3}(0) \qquad C_{1} = C_{3} \equiv C \qquad \psi_{2}(0) = C$$

$$\frac{d\psi_{1}}{dx}\Big|_{x=-\varepsilon} = Cke^{-k\varepsilon} = \frac{d\psi_{2}}{dx}\Big|_{x=-\varepsilon} \qquad \frac{d\psi_{3}}{dx}\Big|_{x=\varepsilon} = -Cke^{-k\varepsilon} = \frac{d\psi_{2}}{dx}\Big|_{x=\varepsilon}$$

$$x \in (-\varepsilon, \varepsilon) \qquad \int_{-\varepsilon}^{\varepsilon} \psi'' dx + \int_{-\varepsilon}^{\varepsilon} 2q\delta(x)\psi_{2}(x) dx - \int_{-\varepsilon}^{\varepsilon} k^{2}\psi_{2}(x) dx = 0 \qquad k = q$$

$$E = -\frac{mA^{2}}{2\hbar^{2}} \qquad \psi(x) = Ce^{-q|x|} \qquad 1 = \int_{-\infty}^{+\infty} |\psi|^{2} dx = 2|C|^{2} \int_{0}^{+\infty} e^{-2qx} dx = \frac{|C|^{2}}{q} = \frac{|C|^{2}\hbar^{2}}{m|A|}$$

$$\psi(x) = \frac{\sqrt{m|A|}}{\hbar} \exp\left(-\frac{m|A|}{\hbar^{2}}|x|\right)$$

Рассеяние на прямоугольной ступеньке

Рассеяние на прямоугольной ступеньке

Рассеяние на прямоугольной ступеньке

Рассеяние на прямоугольном барьере

Заметим, что T = 1 при $k_2 L = \pi n$, где n = 1, 2, 3...

Рассеяние на прямоугольном барьере

α-распад ядра

Сканирующий туннельный микроскоп (СТМ)

Tip

Tunneling voltage

Sample

Piezoelectric tube with electrodes Control voltages for piezotube

Distance control

and scanning unit

Tunneling

current amplifier

Co islands on Cu(111)

42 x 42 nm²

Cu(001)

10 x 10 nm²

(a)

Data processing and display

Рассеяние на б-образном потенциале A = const > 0E > 0 $U(x) = A\delta(x)$ $k = \frac{\sqrt{2mE}}{\hbar} \qquad \qquad q = \frac{mA}{\hbar^2}$ $\psi'' - 2q\delta(x)\psi + k^2\psi = 0$ $x \in (-\infty, -\varepsilon) \cup (\varepsilon, \infty) \qquad \psi'' + k^2 \psi = 0 \qquad \begin{cases} \psi_1(x) = e^{ikx} + A_{\text{отр}} e^{-ikx} & \text{при } x < -\varepsilon \\ \psi_3(x) = A_{\text{плош}} e^{ikx} & \text{при } x > \varepsilon \end{cases}$ при $x < -\varepsilon$ $1 + A_{\text{orp}} = A_{\text{прош}} = \psi_2(0)$ $\psi_1(0) = \psi_2(0) = \psi_3(0)$ $\psi'_{3}(+0) = ikA_{\text{прош}} = \psi'_{2}(+0)$ $\psi'_1(-0) = ik(1 - A_{orp}) = \psi'_2(-0)$ $\int_{0}^{\varepsilon} \psi'' dx - \int_{0}^{\varepsilon} 2q\delta(x)\psi_{2}(x)dx + \int_{0}^{\varepsilon} k^{2}\psi_{2}(x)dx = 0 \qquad 1 - A_{\text{orp}} = A_{\text{прош}} \left(1 - \frac{2q}{ik}\right)$ $A_{\text{прош}} = \left(1 + \frac{iq}{k}\right)^{-1}$ $T = \frac{1}{1 + \frac{mA^2}{2t^2 r}}$

Квазистационарное состояние

Список литературы (часть 3):

- Иродов И.Е. Физика макросистем. Основные законы. М: Бином, 2001. 196 с.
- Матвеев А.Н. Молекулярная физика. М: Высшая школа, 1981. 400 с.
- Фейнман Р. Фейнмановские лекции по физике, т.9, М: Мир, 1967. 260 с.
- Киттель Ч. Введение в физику твердого тела. М: Наука, 1978. 792 с.

Квантовое описание системы многих частиц

$$\hat{H}\psi(x_{1}, x_{2}) = E\psi(x_{1}, x_{2})$$
Hевзаимодейс

$$\hat{H} = \hat{H}_{1} + \hat{H}_{2} + U(x_{1}, x_{2})$$

$$\psi(x_{1}, x_{2}) = \psi_{a}$$

$$\psi(x_{2}, x_{1}) = \frac{1}{\sqrt{2}} \{\psi_{a}(x_{1}, x_{2}) = \frac{1$$

энергия взаимодействия Невзаимодействующие частицы

$$U(x_1, x_2) = 0$$

$$\psi(x_1, x_2) = \psi_a(x_1)\psi_b(x_2)$$

$$\psi(x_2, x_1) = \psi_a(x_2)\psi_b(x_1) \neq \psi(x_1, x_2)$$

$$\psi_{S}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} \left\{ \psi_{a}(x_{1})\psi_{b}(x_{2}) + \psi_{a}(x_{2})\psi_{b}(x_{1}) \right\}$$

$$\psi_A(x_1, x_2) = \frac{1}{\sqrt{2}} \{ \psi_a(x_1) \psi_b(x_2) - \psi_a(x_2) \psi_b(x_1) \}$$

Фермионы S=1/2, 3/2,...

Фермионы

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,							
Leptons spin =1/2				Quark	S spin	=1/2	
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge	
VL lightest neutrino*	(0−0.13)×10 ^{−9}	0		U up	0.002	2/3	
e electron	0.000511	-1		d down	0.005	-1/3	
𝔑 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3	
μ muon	0.106	-1		S strange	0.1	-1/3	
𝔥 heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		t top	173	2/3	
τ tau	1.777	-1		b bottom	4.2	-1/3	

Бозоны

Unified Electroweak spin = 1						
Name	Mass GeV/c ²	Electric charge				
Y photon	0	0				
W	80.39	-1				
W ⁺	80.39	+1				
W bosons	91.188	0				
Z boson						

Распределения Ферми-Дирака и Бозе-Эйнштейна

Частицы с полуцелым спином (фермионы) подчиняются статистике Ферми-Дирака с распределением

$$\langle n_k \rangle = \frac{1}{e^{(E_k - \mu)/kT} + 1} \qquad 0 \le \langle n_k \rangle \le 1 \qquad \mu > 0$$

Частицы с целым спином (бозоны) подчиняются статистике Бозе-Эйнштейна с распределением

$$\langle n_k \rangle = \frac{1}{e^{(E_k - \mu)/kT} - 1} \qquad \langle n_k \rangle \ge 0 \qquad \mu \le 0$$

µ - химический потенциал, находится из условия нормировки

$$\sum_{k} \frac{1}{e^{(E_k - \mu)/kT} \pm 1} = N$$
 где N - полное число частиц

Свойства распределения Ферми-Дирака

$$\langle n_k \rangle = \frac{1}{e^{(E_k - \mu)/kT} + 1} \langle n_k (E = \mu) \rangle = \frac{1}{2} E_F = \mu (T = 0)$$

для электронного газа в металлах:

$$E_F \sim 5 \Im B >> kT_k = \frac{1}{40} \Im B$$

$$T_F = \frac{E_F}{k} \sim 200T_k \sim 60000K$$

Свойства распределения Бозе-Эйнштейна

Характеристики электронного газа в металле при T=0

$$E_F = \frac{\hbar^2}{2m} \left(3\pi^2 n\right)^{2/3}$$

$$n = 5 \cdot 10^{22} c M^{-3} \implies E_F = 5 \Im B$$

$$< E >= \frac{\int_{0}^{E_{F}} E\sqrt{E}dE}{\int_{0}^{E_{F}} \sqrt{E}dE} = \frac{3}{5}E_{F} = 3$$
 ЭВ $T \sim 4 \cdot 10^{4} K$

$$\upsilon_{\max} \equiv \upsilon_F = \sqrt{2E_F / m} = 1.3 \cdot 10^3 \, \text{km} / \text{cek} \neq 0 \qquad \upsilon_F \ll c$$
$$\lambda_F = \frac{h}{p_F} = \frac{h}{m\nu_F} = \frac{6.63 \cdot 10^{-34} \, \text{Дж} \cdot c}{1.3 \cdot 10^6 \, (\text{m} / c) 0.9 \cdot 10^{-30} \, \text{ke}} = 5.5 \cdot 10^{-10} \, \text{m} = 5.5 \, \text{A}^{0}$$

Электронный газ в металле при $0 < T \ll T_{F}$

Асимптотическое разложение интегралов вида

I =

Химический потенциал

 $I = \int_{0}^{\infty} \frac{F(E)dE}{e^{(E-\mu)/kT}+1}$ при

$$kT \ll \mu$$
 имеет вид:
 $\int_{0}^{\mu} F(E)dE + \frac{\pi^{2}}{6} (kT)^{2} F'(\mu) + \dots$
 $\mu(T) = E_{F} \left[1 - \frac{\pi^{2}}{12} \left(\frac{kT}{E_{F}} \right)^{2} \right]$

 $\left\langle E\right\rangle = \frac{3}{5}E_F + \frac{\pi^2}{4}\frac{\left(kT\right)^2}{E_F}$

Средняя энергия

Теплоемкость

Конденсация Бозе-Эйнштейна

При температуре $T = T_{BEC}$ химический потенциал бозонов становится равным нулю.

Распределение бозонов по энергии принимает вид:

$$f(E) = (2s+1)\frac{1}{n}\frac{m^{3/2}}{\sqrt{2}\pi^2\hbar^3}\frac{\sqrt{E}}{\exp\left(\frac{E}{kT_{BEC}}\right) - 1}$$

Из условия нормировки получим:

$$T_{BEC} = \frac{3,31}{\left(2s+1\right)^{2/3}} \frac{\hbar^2}{mk} n^{2/3}$$

Концентрация конденсата при $T < T_{BEC}$ равна

$$n_{BEC} = n \left[1 - \left(\frac{T}{T_{BEC}} \right)^{3/2} \right]$$

Фотонный газ

Для фотонов 2S+1=2 из-за поперечности электромагнитной волны

$$dN_{\rm cocr} = 2 \frac{4\pi p^2 dp}{(2\pi\hbar)^3} \qquad dN = \langle n \rangle dN_{\rm cocr} \qquad \langle n \rangle = \frac{1}{e^{\hbar\omega/kT} - 1}$$

$$E = \hbar \omega = cp \Longrightarrow dE = cdp$$

$$dN_{\rm cocr} = 2\frac{4\pi E^2}{(2\pi\hbar)^3 c^3} dE = \frac{\omega^2}{\pi^2 c^3} d\omega$$

Спектральная плотность энергии (для единицы объема):

$$\rho(\omega,T) = \hbar\omega \langle n \rangle \frac{dN_{\text{cocr}}}{d\omega} = \frac{\omega^2}{\pi^2 c^3} \frac{\hbar\omega}{e^{\hbar\omega/kT} - 1}$$

Формула Планка !

Колебания цепочки из одинаковых шариков

Колебания цепочки из шариков двух сортов

$$\begin{aligned} -\omega^2 M_1 \zeta &= \beta \eta \left(e^{iqa} + e^{-iqa} \right) - 2\beta \zeta \\ -\omega^2 M_2 \eta &= \beta \zeta \left(e^{iqa} + e^{-iqa} \right) - 2\beta \eta \end{aligned} \begin{vmatrix} 2\beta - \omega^2 M_1 & -2\beta \cos qa \\ -2\beta \cos qa & 2\beta - \omega^2 M_2 \end{vmatrix} = 0 \end{aligned}$$

$$\omega_{\pm}^{2} = \beta \left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right) \pm \beta \sqrt{\left(\frac{1}{M_{1}} + \frac{1}{M_{2}} \right)^{2} - \frac{4 \sin^{2} qa}{M_{1}M_{2}}}$$

Колебания цепочки из шариков двух сортов

Переход от классического описания кристалла к квантовому. Фононы

Фононы – это квазичастицы со следующими характеристиками:

- 1) Энергия и импульс: $E = \hbar \omega$ $\mathbf{p} = \hbar \mathbf{k}$
- 2) Macca: m = 0
- 3) Спин: *s* = 1
- 4) Объем квантового состояния:

$$\Delta p = \frac{\left(2\pi\hbar\right)^3}{V}$$

Тепловая энергия кристалла:

$$E_{\text{тепл}} = n_1 \hbar \omega_1 + n_2 \hbar \omega_2 + \ldots + n_N \hbar \omega_N$$

Температура Дебая

Температура Дебая – это температура, при которой возбуждаются колебания на <u>всех</u> частотах:

$$k_{B}T_{D} = \hbar\omega_{\max}$$

Оценим температуру Дебая для фононов одной поляризации:

Теплоемкость кристаллической решетки

Общий алгоритм вычисление теплоемкости

Классическая модель. Формула Дюлонга и Пти

TT – совокупность N независимых атомов, по 3 колебательных степени свободы на атом

$$E(T) = 3N_A \cdot k_B T$$

Модель Эйнштейна

TT – совокупность 3N независимых *квантовых* осцилляторов, колеблющихся с *одинаковой частотой* ω (или свободный газ фононов с законом дисперсии ω = CONSt)

$$E = 3N_A \hbar \omega < n >= 3N_A \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_B T}} - 1}$$

При высоких Т: $k_B T >> \hbar \omega \Longrightarrow C = 3R$

При низких Т: $k_B T \ll \hbar \omega$ $C \sim \frac{1}{T^2} e^{-\frac{\hbar \omega}{k_B T}} \rightarrow 0$

Модель Дебая

Теплоемкость TT определяется как теплоемкость свободного газа фононов с *линейным законом дисперсии* $\omega = c_{_{3B}}k$

Плотность состояний фононов равна

 $\frac{dn_{\text{сост}}}{d\omega} = \frac{3}{2}V \frac{\omega^2}{\pi^2 \overline{c}^3} \qquad \text{где } \overline{c} - \text{средняя скорость звука:} \\ \frac{3}{\overline{c}^3} = \frac{1}{c_{\parallel}^3} + \frac{2}{c_{\perp}^3}$

Число фононов в интервале частот (ω,ω+dω) на один атом кристалла:

$$f(\omega) = \frac{1}{N} \frac{dn_{\text{cocr}}}{d\omega} \langle n \rangle = \frac{3}{2n} \frac{\omega^2}{\pi^2 \overline{c}^3} \frac{1}{\exp\left(\frac{\hbar\omega}{k_B T}\right) - 1}$$

Модель Дебая (продолжение)

Средняя энергия фононов на один атом кристалла

$$\langle E \rangle = \hbar \langle \omega \rangle = \int_{0}^{\omega_{\text{max}}} \omega f(\omega) d\omega = 9k \frac{T^4}{T_D^3} \int_{0}^{T_D/T} \frac{x^3 dx}{e^x - 1}$$

При высоких Т: $T >> T_D \rightarrow C = 3R$

При низких Т: $T \ll T_D \rightarrow$

$$C(T) = \frac{12}{5}\pi^4 R \left(\frac{T}{T_D}\right)^3$$

Эффективная масса электрона

 $\omega = \omega(k)$ или E = E(p) вместо $E = \frac{p^2}{2m}$

$$\left\{\frac{1}{m_{\rm spp}}\right\}_{\alpha\beta} = \frac{1}{\hbar^2} \frac{\partial^2 E(k)}{\partial k_{\alpha} \partial k_{\beta}}$$

Фермиевские электроны

Фермиевские электроны – это квазичастицы, описывающие движение электронов в периодической решетке, со следующими характеристиками:

1) Энергия и импульс: $E = \hbar \omega$ $p = \hbar k$

- 2) Macca: $m = m_{_{\Im \varphi \varphi}}$
- 3) Закон дисперсии:

$$E = \frac{p^2}{2m_{\rm solution}}$$

4) Спин:
$$s = \frac{1}{2}$$

Энергетические зоны в кристаллах

Одновалентные атомы: Li, Na, K, Cu ... - проводники

Поверхность Ферми электронов в металлах

1-ая зона Бриллюэна

Спиновые волны в одномерной цепочке

Гамильтониан Гейзенберга:

$$H = -\frac{2J}{\hbar^2} \sum_{n=1}^{N} \mathbf{s}_n \mathbf{s}_{n+1} = -J \sum_{n=1}^{N} \left(\hat{P}_{n,n+1} - 1 \right)$$

Уравнение Шредингера в матричной форме:

$$i\hbar \frac{\partial a_n}{\partial t} = -Ja_{n-1} + 2Ja_n - Ja_{n+1}$$

Ищем решение в виде бегущей волны:

$$a_n(t) = Ce^{i(kan-\omega t)}$$

J > 0

Закон дисперсии спиновой волны:

$$E(k) = 2J \left[1 - \cos(ka) \right] \approx Ja^2 k^2$$

Эффективная масса спиновой волны:

$$m_{\rm spp} = \frac{\hbar^2}{2Ja^2}$$

Магноны в ферромагнетике

Магноны – это квазичастицы, описывающие распространение спиновых волн в ферромагнетике, со следующими характеристиками:

1) Энергия и импульс: $E = \hbar \omega$ $p = \hbar k$

4) Спин: s = 0 $\mu = 0$

Магноны движутся в кристалле, как свободные бозоны с массой ${\it m}_{
m sdd}$

Плотность состояний магнонов

Число магнонов в интервале частот (ω,ω+dω) на один атом кристалла:

$$f(\omega) = \frac{1}{N} \frac{dn_s}{d\omega} \overline{n} = \frac{\sqrt{\omega}}{4\pi^2} \left(\frac{\hbar}{Ja^2}\right)^{3/2} \frac{1}{n} \frac{1}{\exp\left(\frac{\hbar\omega}{k_BT}\right) - 1}$$

Намагниченность ферромагнетика при низкой температуре

При T = 0 К намагниченность кристалла равна: $M_0 = \mu_B n$

А при температуре отличной от нуля: $M = \mu_{B} n - 2 \mu_{B} n_{\text{маг}} = M_{0} - \left| \Delta M \right|$

Тогда

$$\frac{\left|\Delta M\right|}{M_{0}} = 2\frac{n_{\text{mar}}}{n} = 2\int_{0}^{\omega_{\text{max}}} f(\omega)d\omega = \frac{1}{2\pi^{2}n} \left(\frac{\hbar}{Ja^{2}}\right)^{3/2} \int_{0}^{\omega_{\text{max}}} \frac{\sqrt{\omega}d\omega}{\exp\left(\frac{\hbar\omega}{k_{B}T}\right) - 1} \approx \frac{1}{2\pi^{2}} \left(\frac{\hbar}{J}\right)^{3/2} \left(\frac{k_{B}T}{\hbar}\right)^{3/2} \int_{0}^{\infty} \frac{\sqrt{x}dx}{e^{x} - 1} = \frac{1}{2\pi^{2}} \left(\frac{k_{B}T}{J}\right)^{3/2} \Gamma\left(\frac{3}{2}\right) \zeta\left(\frac{3}{2}\right)$$

– закон Блоха

$$\frac{\left|\Delta M\right|}{M_0} \approx 0.118 \left(\frac{k_B T}{J}\right)^{3/2}$$

Вклад магнонов в теплоемкость ферромагнетика при низкой температуре

Средняя энергия магнонов на один атом кристалла:

$$\overline{E} = \int_{0}^{\omega_{\text{max}}} \hbar \omega f(\omega) d\omega = \frac{\hbar}{4\pi^2} \left(\frac{\hbar}{Ja^2}\right)^{3/2} \frac{1}{n} \int_{0}^{\omega_{\text{max}}} \frac{\omega^{3/2}}{\exp\left(\frac{\hbar\omega}{k_BT}\right) - 1} d\omega \approx$$
$$\approx \frac{\hbar}{4\pi^2} \left(\frac{\hbar}{J}\right)^{3/2} \left(\frac{k_BT}{\hbar}\right)^{5/2} \int_{0}^{\infty} \frac{x^{3/2} dx}{e^x - 1} = \frac{k_B T^{5/2}}{4\pi^2} \left(\frac{k_B}{J}\right)^{3/2} \Gamma\left(\frac{5}{2}\right) \zeta\left(\frac{5}{2}\right)$$

$$\overline{E} = 0,045k_B \left(\frac{k_B}{J}\right)^{3/2} T^{5/2}$$

Тогда

$$C_{V} = N_{A} \frac{d\overline{E}}{dT} = \frac{5}{2} N_{A} \frac{\overline{E}}{T}$$

$$C_V = 0,113R \left(\frac{k_B T}{J}\right)^{3/2}$$